Space-time wiring specificity supports direction selectivity in the retina
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Abstract

How does the mammalian retina detect motion? This classic
problem in visual neuroscience has remained unsolved for 50
years. In search of clues, we reconstructed Off-type starburst
amacrine cells (SACs) and bipolar cells (BCs) in serial electron
microscopic images with help from EyeWire, an online com-
munity of “citizen neuroscientists.” Based on quantitative anal-
yses of contact area and branch depth in the retina, we found
evidence that one BC type prefers to wire with a SAC den-
drite near the SAC soma, while another BC type prefers to wire
far from the soma. The near type is known to lag the far type
in time of visual response. A mathematical model shows how
such “space-time wiring specificity” could endow SAC den-
drites with receptive fields that are oriented in space-time and
therefore respond selectively to stimuli that move in the out-
ward direction from the soma.

Compared to cognitive functions such as language, the visual de-
tection of motion may seem trivial, yet the underlying neural mech-
anisms have remained elusive for half a century ">, Some retinal
outputs (ganglion cells) respond selectively to visual stimuli mov-
ing in particular directions, while retinal inputs (photoreceptors)
lack direction selectivity (DS). How does DS emerge from the mi-
crocircuitry connecting inputs to outputs?

Research on this question has converged upon the starburst
amacrine cell (SAC, Figs. 1a, b). A SAC dendrite is more acti-
vated by motion outward from the cell body to the tip of the den-
drite, than by motion in the opposite direction?. Therefore a SAC
dendrite exhibits DS, and outward motion is said to be its “pre-
ferred direction.” Note that it is incorrect to assign a single such
direction to a SAC, because each of the cell’s dendrites has its own
preferred direction (Fig. 1a). DS persists after blocking inhibitory
synaptic transmission“, when the only remaining inputs to SACs

are bipolar cells (BCs), which are excitatory. Since the SAC ex-
hibits DS, while its BC inputs do not>, we say that DS emerges
from the BC-SAC circuit.

Mouse BCs have been classified into multiple types®, with dif-
ferent time lags in visual response’®. Motion is a spatiotemporal
phenomenon: an object at one location appears somewhere else af-
ter a time delay. Therefore we wondered whether DS might arise
because different locations on the SAC dendrite are wired to BC
types with different time lags. More specifically, we hypothesized
that the proximal BCs (wired near the SAC soma) lag the distal
BCs (wired far from the soma).

Such “space-time wiring specificity” could lead to DS as follows
(Fig. 1c). Motion outward from the soma will activate the proximal
BCs followed by the distal BCs. If the stimulus speed is appropri-
ate for the time lag, signals from both BC groups will reach the
SAC dendrite simultaneously, summing to produce a large depo-
larization. For motion inward towards the soma, BC signals will
reach the SAC dendrite asynchronously, causing only small depo-
larizations. Therefore the dendrite will “prefer” outward motion,
as observed experimentally 3.

3D reconstruction by crowd and machine

We tested our hypothesis by reconstructing Off BC-SAC circuitry
using €2198, an existing dataset of mouse retinal images from se-
rial block-face scanning electron microscopy (SBEM)®. The 2198
dataset was oversegmented by an artificial intelligence (AI) into
groups of neighboring voxels that were subsets of individual neu-
rons. These “supervoxels” were assembled by humans into accu-
rate 3D reconstructions of neurons. For this activity, we hired and
trained a small number of workers in the lab, and also transformed
work into play by mobilizing volunteers through EyeWire, a web
site that turns 3D reconstruction of neurons into a game of coloring
serial EM images.



Through EyeWire, we wanted to enable anyone, anywhere, to
participate in our research. The approach is potentially scalable
to extremely large numbers of “citizen scientists”'°. More impor-
tantly, the 3D reconstruction of neurons requires highly developed
visuospatial abilities, and we wondered whether a game could be
more effective !! than traditional methods of recruiting and creating
experts.

In gameplay mode, EyeWire shows a 2D slice through a “cube,”
an e2198 subvolume of 256° grayscale voxels (Fig. 2a). Gameplay
consists of two activities: coloring the image near some location, or
searching for a new location to color. Coloring is done by clicking
at any location in the 2D slice, which causes the supervoxel con-
taining that location to turn blue. Searching is done by translating
and orienting the slice within the cube, and interacting with a 3D
rendering of the colored supervoxels.

When the player first receives a cube, it already comes with a
“seed,” a contiguous set of colored supervoxels. The challenge is to
color all the rest of the supervoxels that belong to the same neuron,
and avoid coloring other neurons. Gameplay for a cube terminates
when the player clicks “Submit,” receives a numerical score (Ex-
tended Data Fig. 1a), and proceeds to the next cube. Because our
Al is sufficiently accurate, coloring supervoxels is faster than man-
ually coloring voxels, an older approach to 3D reconstruction 2.

The scoring system is designed to reward accurate coloring. This
is nontrivial because EyeWire does not know the correct color-
ing. Each cube is assigned to multiple players (typically 5 to 10),
and high scores are earned by players who color supervoxels that
other players also color. In other words, the scoring system re-
wards agreement between players, which tends to be the same as
rewarding accuracy.

Consensus is used not only to incentivize individual players, but
also to enhance the accuracy of the entire system. Any player’s
coloring is equivalent to a set of supervoxels. Given the color-
ings of multiple players starting from the same seed in the same
cube, a consensus can be computed by voting on each supervoxel.
EyeWirer consensus was much more accurate than any individual
EyeWirer (Fig. 2b,c).

Coloring a neuron is more challenging than it sounds. Images
are corrupted by noise and other artifacts. Neurites take paths that
are difficult to predict, and can branch without warning. Careless
errors result from lapses in attention. Extensive practice is required
to achieve accuracy. The most accurate EyeWirers (Fig. 2c, upper
right corner) often had experience with thousands of cubes. Im-
provements in accuracy were observed over the course of hundreds
of cubes, corresponding to tens of hours of practice (Fig. 2d). Ac-
cording to subjective reports of EyeWirers, learning continues for
much longer than that. In contrast, previous successes at “crowd-
sourcing” image analysis involved tasks that did not require such
extensive training %13,

Reconstructing an entire neuron requires tracing its branches
through thousands of cubes. This process is coordinated by an au-
tomatic spawner, which inspects each consensus cube for branches
that exit the cube. Each exit generates a new cube and seed, which
are added to a queue. EyeWirers are automatically assigned to
cubes by an algorithm that attempts to balance the number of plays
for each cube.

Over 100,000 registered EyeWirers have been recruited by news
reports, social media, and the EyeWire blog. Players span a broad
range of ages and educational levels, come from over 130 coun-
tries, and the great majority have no formal training in neuroscience

(Extended Data Figs. 2 and 3; Supplementary Notes). These statis-
tics show that EyeWire indeed widens participation in neuroscience
research. At the same time, the most avid players constitute an elite
group with disproportionate achievements. For example, the top
100 players have contributed about half of all cubes completed in
EyeWire.

Lab workers also reconstructed neurons independently of Eye-
Wire, with a more sophisticated version of the user interface (Meth-
ods). Their reconstructions were pooled with those of EyeWirers
for the analyses reported below. Reconstruction error was quan-
tified (Methods), and was treated like other kinds of experimental
error when calculating confidence intervals from our data.

Contact analysis

We reconstructed 195 Off BC axons and 79 Off SACs from €2198
(Fig. 3b, Extended Data Fig. 4). The 2198 retina was stained in an
unconventional way that did not mark intracellular structures such
as neurotransmitter vesicles®, and reliable morphological criteria
for identification of BC presynaptic terminals are unknown. As an
indirect measure of connectivity, contact areas were computed for
all BC-SAC pairs. The resulting “contact matrix” was analyzed
through two subsequent steps.

In the first step, Off BC axons were classified into five cell types,
following structural criteria'* established to correspond with pre-
vious molecular definitions® (Methods, Extended Data Fig. 5). BC
types stratify at characteristic depths in the inner plexiform layer
(IPL), and vary in size (Fig. 4a). The BCs of each type formed
a “mosaic,” meaning that cells were spaced roughly periodically
(Extended Data Fig. 6a-e). This is generally accepted as an im-
portant defining property of a retinal cell type. Type densities (Ex-
tended Data Fig. 6f) were roughly consistent with previous re-
ports®. When the columns of the contact matrix were sorted by BC
type (Fig. 4b), it became evident that BC2 and BC3a contact SACs
more than other BC types.

In the second step, we averaged contact area over BC-SAC pairs
of the same BC type and similar distance between the BC axon and
the SAC soma in the plane tangential to the retina (Fig. 4c). These
absolute areas were normalized to convert them into the percentage
of SAC surface area covered by BCs of a given type (Methods).
The resulting graphs show that BC2 prefers to contact SAC den-
drites close to the SAC soma, whereas BC3a prefers to contact far
from the soma (Fig. 4d, Extended Data Fig. 7c).

Imaging of intracellular calcium in BC axons’ and extracellular
glutamate around BC axons? indicate that BC2 lags BC3a in visual
responses by 50 to 100 ms. Therefore BC-SAC wiring appears to
possess the space-time specificity appropriate for an outward pre-
ferred direction, as we hypothesized (Fig. 1c¢).

Co-stratification analysis

Off SACs stratify at a particular depth in the IPL (Fig. 1b). Why
this depth and not some other? From Fig. 4a, it is obvious that this
depth is appropriate for wiring with BC2 and BC3a, as required
by our model of DS emergence. Following this logic one step fur-
ther, we wondered whether the observed dependence of contact on
distance from the SAC soma might be reflected in fine aspects of
SAC morphology. We hypothesized that SAC dendrites are “tilted,”
moving deeper into the IPL with distance from the SAC soma.
Such a change in depth would be compatible with more overlap
with BC2 near the soma, and more overlap with BC3a far from
the soma, since BC3a is deeper in the IPL than BC2 (Fig. 4a and



Supplementary Video).

The hypothesized tilt turns out to exist (Fig. 5a). Very close
to the SAC soma, the dendrites dive sharply into the IPL from the
INL. Surprisingly, IPL depth continues to increase as distance from
the SAC soma in the tangential plane ranges from 20 to 80 um.
The slight increase is not evident in a single dendrite (Fig. 1b), but
emerges from statistical averaging.

Could dendritic tilt be the cause of the observed variation in BC-
SAC contact with distance (Fig. 4d)? We cannot address causality
based on our data, but we can test how well the tilt predicts con-
tact variation. We computed the stratification profiles of BC types
(Fig. 5a), defined as the one-dimensional density of BC surface
area along the depth of the IPL. We also computed the stratification
profile of SAC dendrites at various distances from the SAC soma
(quartiles, Fig. 5a). Assuming that BC and SAC arbors are statis-
tically independent of each other, we estimated contact from “co-
stratification,” defined as the integral over IPL depth of the product
of BC and SAC stratification profiles (Methods).

We found that actual BC2 contact depends more strongly on dis-
tance than predicted; the slight change in IPL depth after the initial
plunge appears too small to account for the large change in actual
BC2 contact. In other failures of contact prediction, BC3a, BC3b,
and BC4 stratify at the same IPL depths (Fig. 5a), yet BC3a makes
much more contact than BC3b or BC4. Also, actual BC3a contact
plummets near the tips of SAC dendrites (Fig. 4d), while predicted
contact does not change at all because the IPL depth of SAC den-
drites is constant in this region (Fig. 5b). Overall, the total contact
from all BC types seems low in this region (Extended Data Fig.
7d), suggesting that BCs avoid making synaptic inputs to the most
distal SAC dendrites. This runs counter to the conventional belief
that input synapses are uniformly distributed over the entire length
of SAC dendrites !°. The unreliability of inferring contact from co-
stratification is illustrated by numerous examples of SAC dendrites
that pass through BC axonal arbors without making any contact at
all (Extended Data Fig. 8).

Model of direction selectivity

Above we mentioned that BC2 lags BC3a in visual response. There
is another important difference: BC3a responds more transiently to
step changes in illumination, while BC2 exhibits more sustained re-
sponses. The implications of the sustained-transient distinction for
DS can be understood using a mathematical model. The activity
of a retinal neuron is often approximated as a linear spatiotempo-
ral filtering of the visual stimulus followed by a nonlinearity '¢17.
Such a “linear-nonlinear” model for the output O(¢) of the SAC
dendrite can be written as

+
o(r) = {/dxdt'W(x,tt')I(x,t’) (1)
For simplicity, the dendrite and visual stimulus /(x,#) are restricted
to a single spatial dimension x, and the nonlinearity is a half-wave
rectification, [z]7 = max {z,0}. We interpret the integral in Eq.
(1) as the summed input from the BCs presynaptic to the SAC.
The nonlinearity could arise from various biophysical mechanisms,
such as synaptic transmission from SACs to other neurons. The

spatiotemporal filter W (x,7) is a sum of two functions,
W (x,t) = Us(x)vs(t) + Us (x) v () (2)

corresponding to contributions from BC2 and BC3a. The sustained
temporal filter v¢(¢) is monophasic, while the transient filter v;(¢)

is biphasic (Fig. 6a). The spatial filter Uy (x) represents the entire
set of all BC2 inputs to the dendrite, and can be estimated from
the BC2 contact area graph in Figure 4d. Similarly, U;(x) can be
estimated from the BC3a contact area graph. The two spatial filters
are displaced relative to each other (Fig. 6a), because BC3a tends
to contact SAC dendrites at more distal locations than BC2.

It is well known that direction selectivity (DS) can be generated
by a model like Egs. (1) and (2), which is based on the sum of two
space-time separable filters %1%, This is illustrated by Fig. 6 using
the fact that the convolution in Eq. (1) is equivalent to “sliding” the
spatiotemporal filter W in time over the stimulus /, and computing
the overlap at each time. The filter W (x,¢) is oriented in space-time
(Fig. 6a), and so also is a moving stimulus I(x,7) (Fig. 6g,h). The
overlap with a rightward-moving stimulus (Fig. 6h) is greater than
for a leftward one (Fig. 6g), so the model is DS, and rightward is
the preferred direction.

How is DS affected by the biphasic shape of the transient tem-
poral filter, v,(¢)? If we remove the negative lobe (Fig. 6c¢), then
v¢(t) will become monophasic like v,(7) and their relation closer
to a simple time lag (Fig. 6d). We will refer to this model as a
“Reichardt detector,” in honor of the pioneering researcher Werner
Reichardt, although it more closely resembles a subunit of his
model?’. On the other hand, removing the positive lobe of v, (f)
makes it monophasic but with inverted sign relative to the sustained
filter (Fig. 6e). The result (Fig. 6f) resembles a DS model origi-
nally proposed by Barlow and Levick?!.

Both modified models (Figs. 6d,f) exhibit DS. In the Reichardt
detector, the inputs from the two arms enhance each other for mo-
tion in the preferred direction. In the Barlow-Levick detector, the
two inputs cancel each other for motion in the null direction. Since
our sustained-transient model (Fig. 6b) employs both mechanisms,
it should exhibit more DS than either detector. Our model is related
to versions of the Reichardt detector with low-pass and high-pass
filters on the two arms?2.

In the original Barlow-Levick model, the negative filter corre-
sponded to synaptic inhibition. Since BCs are believed to be ex-
citatory, negative BC input in our model represents a reduction of
excitation relative to the resting level, rather than true inhibition.
Signaling by reduced excitation may be possible, at least for low
contrast stimuli, as BC ribbon synapses may have a significant rest-
ing rate of transmitter release 3.

The model of Eqgs. (1) and (2) is a useful starting point for
many theoretical investigations that are outside the scope of this
article. For example, DS dependences on the spatial and tempo-
ral frequency of a sinusoidal traveling wave stimulus are calculated
in the Supplementary Equations, and DS dependence on stimulus
speed is graphed in Extended Data Figure 9.

Discussion

In our DS model, SAC dendrites are wired to BC types with dif-
ferent time lags. A previous model did not distinguish between BC
types, and instead relied on the time lag of signal conduction within
the SAC dendrite itself2* (Fig. 1d). Like most other amacrine cells,
SACs lack an axon; their output synapses are found in the distal
zones of their dendrites 1 (Fig. 1a, inset). Due to dendritic con-
duction delay, proximal BC inputs should take longer to reach the
output synapses than distal BC inputs (Fig. 1d). Therefore this time
lag is also consistent with the empirical finding of an outward pre-
ferred direction. To summarize the novelty of our hypothesis, we
place the time lag before BC-SAC synapses, whereas the previous



model places it after BC-SAC synapses.

The postsynaptic delay model has a major weakness. If dendritic
conduction were the only source of time lag, the somatic voltage
would exhibit DS with an inward preferred direction, but this is
inconsistent with intracellular recordings® (Fig. le). In contrast,
the presynaptic delay model is compatible with approximating an
SAC dendrite as isopotential (Fig. 1c), so preferred direction is
predicted to be independent of the location of the voltage measure-
ment, consistent with empirical data®. It may also be possible to
make the postsynaptic delay model consistent with experiments by
adding active dendritic conductances*.

The presynaptic and postsynaptic delay models are not mutually
exclusive. If they work together, passive cable theory suggests that
presynaptic delay dominates, because estimated postsynaptic delay
is much shorter than the time lag between BC2 and BC3a (Supple-
mentary Equations). Can we gauge the relative importance of the
delays empirically rather than theoretically? One way would be in-
tracellular recording at the SAC soma of responses to visual stim-
ulation at various dendritic locations. If postsynaptic delay domi-
nates, then response latency will grow with distance of the visual
stimulus from the soma. If presynaptic delay dominates, then distal
stimulation will evoke somatic responses with shorter latency than
proximal stimulation. This prediction may seem counterintuitive,
but is an obvious outcome of our model.

Many other models of DS emergence in SACs invoke inhibition
as well as excitation>~28. We have focused on excitatory mech-
anisms, as blocking inhibition does not abolish DS3. However,
inhibition may have the effect of enhancing DS, and its role should
be investigated further.

This work focused on Off BC-SAC circuitry. An analo-
gous sustained-transient distinction can also be made for On BC
types 8. It remains to be seen whether their connectivity with On
SACs depends on distance from the soma. If this turns out to be
the case, then the model of Figure 6 could serve as a general theory
of motion detection by both On and Off SACs. The model filter of
Figure 6a also resembles the spatiotemporal receptive field of the J
type of ganglion cell (Fig. 3b of Ref. 29).

Neural activity imaging3® and connectomic analysis>' have re-
cently identified a plausible candidate for the site of DS emergence
in the fly visual system. If our theory is correct, then the analo-
gies between insect and mammalian motion detection! are more
far-reaching than previously suspected, with fly T4 and TS5 cells
corresponding to On and Off SAC dendrites in both connectivity
and function.

A glimmer of space-time wiring specificity can even be seen in
the structure of the SAC itself. Since BC types with different time
lags arborize at different IPL depths, IPL depth can be regarded as a
time axis. Therefore, the slight tilt of the SAC dendrites in the IPL
(Fig. 5a) could be related to the orientation of the SAC receptive
field in space-time (Fig. 6a). However, dendritic tilt alone is not
sufficient to predict our model, as co-stratification sometimes fails
to predict contact (Figs. 4d, 5b). For example, co-stratification pre-
dicts strong BC4 connectivity to distal SAC dendrites. This would
favor an inward preferred direction, contrary to what is observed,
because BC2 leads (not lags) BC4 in visual responses7.

The idea that contact (or connectivity) can be inferred from co-
stratification is sometimes known as Peters’ Rule32, and has also
been applied to estimate neocortical connectivity 3333, The present
work shows that fairly subtle violations of Peters’ Rule may be im-
portant for visual function. Previous research suggests that On-Off

direction selective ganglion cells (DSGCs) inherit their DS from
SAC inputs due to a strong violation of Peters’ Rule %3638,

Our findings were made possible by using Al to reduce the
amount of human effort required for 3D reconstruction of neurons.
Even after the labor savings, our research required great human ef-
fort from a handful of paid workers in the lab and a large number
of volunteers through EyeWire. Our experiences do not support
claims that the “wisdom of the crowd” should replace experts>°.
Instead, EyeWire depends on cooperation between lab experts and
online amateurs (Methods). Furthermore, some amateurs devel-
oped remarkable expertise and were promoted to increasingly so-
phisticated roles within the EyeWire community (Supplementary
Notes). We believe that crowd wisdom requires amplifying the ex-
pert voices within the crowd, and also empowering individuals to
become experts. Fortunately, such goals are well-matched to the
game format.

The EyeWire Al was based on a deep convolutional net-
work*>*! | Similar networks have been successfully applied to se-
rial EM images obtained using conventional staining techniques
that mark intracellular organelles*?. Extending EyeWire to such
images, in which synapses are clearly visible, would enable a
true connection analysis that goes beyond the contact and co-
stratification analyses employed here.

Our work demonstrates that reconstructing a neural circuit can
provide surprising insights into its function. Much more will be
learned as reconstruction speed grows. The combination of crowd
and artificial intelligence promises a continuous upward path of
improvement, as human input from the crowd is not only useful
for generating neuroscience discoveries, but also for making the
Al more capable through machine learning.

Methods summary

A convolutional network (CN) was trained to detect neu-
ral boundaries via the MALIS procedure®® and CNPKG
(https://github.com/srinituraga/cnpkg/), which is based on Cortical
Network Simulator®’. The CN was applied to the e2198 dataset,
which was then segmented into supervoxels by a modified version
of the watershed algorithm. Paid workers and volunteer EyeWirers
reconstructed neurons in 3D by assembling supervoxels. The retina
was computationally flattened, reconstructed neurons were classi-
fied by their structural properties, and contact and co-stratification
were analyzed by custom MATLAB and C++ code.
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Figure 1: Starburst amacrine cell and its direction selectivity. Off SAC (red) viewed opposite (a) and perpendicular (b) to the light
axis. GCL, IPL, INL are ganglion cell, inner plexiform, inner nuclear layers. Grayscale images from the e2198 dataset®. Swellings of
distal dendrites are presynaptic boutons (inset). Scale bar is 50 um. ¢, We hypothesize that a SAC dendrite is wired to pathways with
different time lags of visual response. d, A previous model invoked the time lag due to signal conduction in a passive dendrite*. e, The
previous model predicts an inward preferred direction for the somatic voltage, contrary to empirical observations>.
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Figure 3: 3D reconstructions of Off BCs and SACs. Cells viewed opposite the light axis. a, BCs alone. b, BCs with SACs. Scale bar
is 50 um.
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Figure 4: BC-SAC contact. a, Off BCs were divided into five types®'4, based on IPL depth and size. Scale bar is 10 um. b, Contact
areas of BC-SAC pairs, sorted by BC types. ¢, Pairs were further sorted by the distance of the BC axon from the SAC soma, as measured
in the tangential plane. Scale bar is 50 um. d, Average BC-SAC contact vs. distance, normalized to percentage of SAC surface area at
that distance (Extended Data Fig. 3b). Standard error is based on the number of pairs for each BC type and distance.
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Co-stratification predictions of BC-SAC contact area vs. distance from the SAC soma. The curves are normalized by SAC area at each
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Methods

We worked with the 2198 dataset® rather than the 2006 dataset '
because 2198 is large enough to encompass entire SAC dendrites
(~ 150 um). All dimensions are uncorrected for tissue shrinkage,
which was previously estimated at 14% by comparison of two-
photon and serial EM images '4.

Machine learning The boundaries between neurons in subvol-
umes of the e2198 and 2006 datasets were manually traced. Us-
ing this as ground truth, a convolutional network (CN) was trained
to detect boundaries between neurons using the MALIS method *°.
The CN had the same architecture as one used previously 4, and
produced as output an affinity graph connecting nearest neighbor
voxels*!. Any subvolume of €2198 could be oversegmented by ap-
plying a modified watershed algorithm to the appropriate subgraph.
The regions of the oversegmentation are called supervoxels.

Reconstruction by workers A team of part-time workers, num-
bering about half a dozen at any given time, reconstructed neu-
rons using a more sophisticated version of the EyeWire interface.
Workers were hired based on an interview and a test of software
use passed by 3/4 of the applicants. They were trained for 40 to 50
hours before generating reconstructions used for research. Their
skills typically improved for months or even years after the initial
training period, and were superior to those of professional neuro-
scientists without reconstruction experience.

As with EyeWire, the task of reconstructing an entire neuron
was divided into subtasks, each of which involved reconstructing
the neuron within a subvolume starting from a supervoxel “seed.”
However, the subvolumes were roughly 100 times larger than Eye-
Wire cubes, and only two workers were assigned to each subvol-
ume.

In the first stage of error correction, disagreements were detected
by computer, and resolved by one of the two workers, or a third
worker. The third occasionally detected and corrected errors that
were not disagreements between the first two. Most disagreements
were the result of careless errors, and were easily resolved. More
rarely, there were disagreements caused by fundamental ambigui-
ties in the image. These locations were noted for later examination
in a further stage of error correction.

This second stage relied on 3D reconstructions of entire neu-
rons assembled from multiple subvolumes and inspected by one of
the authors (J.S.K.). Suspicious branches or terminations, as well
as overlaps between reconstructions of different neurons were de-
tected. The original image was reexamined at these locations to
check for errors. The process was repeated until no further errors
could be detected.

The precision of our final reconstruction relative to the truth is
probably comparable to the precision of the penultimate recon-
struction relative to the final reconstruction, 0.99 for SACs and
0.96 for BCs. Recall is likely somewhat poorer, because missing
branches are more difficult to detect than superfluous branches. Re-
call must be reasonably good for SACs, as missing branches would
be detected by deviations from the typical SAC shape and radius.

Reconstruction by EyeWirers Some reconstruction errors slip
past the consensus mechanism. These are detected through vi-
sual inspection of an “overview” mode, which displays 3D ren-
derings of entire neurons currently under reconstruction (Extended
Data Fig. 1b). False branches become obvious once they are long
enough, and are reported by EyeWirers through chat or email. They
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are chopped off by GrimReaper, a special EyeWirer played by lab
experts endowed with the superpower of overruling the consensus.
GrimReaper also extends branches that have terminated prema-
turely. Correction by GrimReaper is similar to the second stage
of error correction described above, so the final reconstruction pre-
sumably has similar accuracy.

SAC reconstructions are extremely difficult for two reasons: (1)
SAC dendrites are very thin and may falsely appear to terminate,
due to limited spatial resolution and imperfect staining, and (2)
the interiors of many SAC boutons contained irregular darkenings,
which could falsely appear like cellular boundaries. (The reason
for the darkening is unclear, as the extracellular staining procedure
was not intended to mark intracellular structures.)

Novices tend to prematurely terminate SAC dendrites. Experts
know that most cubes do not contain termination points, and there-
fore try harder to find continuations, employing a variety of sophis-
ticated search strategies. GrimReaper is also allowed to view how
the cube fits into the entire reconstructed neuron. This additional
spatial context can be used to disambiguate difficult cubes, given
knowledge of the typical appearance of a SAC.

Before learning in normal gameplay (Fig. 2d), all EyeWirers are
required to go through a training session immediately after register-
ing for the site. This consists of a sequence of tutorial cubes, each
of which was previously colored by an expert (Extended Data Fig.
1c). Each cube teaches through instructions and per-click feedback
about accuracy based on comparing the EyeWirer’s selections with
those of the expert. After submitting a tutorial cube, the EyeWirer
is given a chance to view mistakes.

Accuracy is monitored on a weekly basis by computing the pre-
cision and recall of each EyeWirer with respect to the truth, defined
as neuron reconstructions based on EyeWire consensus followed
by GrimReaper corrections. Less accurate EyeWirers are given less
weight in the vote.

Players’ daily, weekly, and monthly scores are publicly dis-
played on a leaderboard (Extended Data Fig. 1b, right), motivating
players to excel through competition. Players communicate with
each other through online “chat” (Extended Data Fig. 1b, left) and
discussion forums.

A “beta test” version of EyeWire was deployed in February
2012, and attracted a small group of users, who helped guide soft-
ware development. EyeWire officially launched in December 2012.

Reconstruction of Off SACs Off SACs were recognized by their
somata in the INL, narrow IPL stratification at roughly one third
of the depth from the INL to the ganglion cell layer (GCL), and
characteristic “starburst” appearance (Fig. 1a).

Off SACs were reconstructed by (1) forward tracing from the
soma to dendritic tips and (2) backward tracing from varicosities
on candidate SAC dendrites to the soma. In the forward method, a
candidate SAC soma was identified as a supervoxel with a charac-
teristic pattern of dendritic stubs bearing spiny protrusions. By the
time reconstruction progressed to approximately half of the aver-
age SAC radius, an Off SAC could be conclusively recognized by
its starburst shape and narrow stratification at the appropriate IPL
depth. More than 90% of candidates turned out to be SACs.

In the backward method, we located a thin dendrite with vari-
cosities at the appropriate IPL depth. This was reconstructed back
to the soma, and then the rest of the dendrites were reconstructed
from the soma to the tips. The cell could be discarded at any point
during this process, if its dendrites escaped from the appropriate
IPL depth or failed to exhibit the proper morphological character-



istics. Less than 25% of initial candidates ended up confirmed as
SACs.

In total, 79 Off SACs were reconstructed, 39 by forward tracing
and 52 by backward tracing. This is more than half the entire pop-
ulation in €2198, judging from the published density**. After can-
didates were identified by one of the authors (J.S.K.), reconstruc-
tions were performed by lab workers (59 cells) or by EyeWirers
(29 cells). Overlapping numbers (12 for forward/backward, 9 for
workers/EyeWirers) mean the combination of the two.

In March 2012, lab workers began reconstruction of SACs. In
March 2013, EyeWirers were invited to the “Starburst Challenge,”
a sequence of tutorial cubes drawn from SACs. Those who passed
with sufficient accuracy were an elite group allowed to reconstruct
SACs (Supplementary Information). EyeWirers eventually shoul-
dered most of the burden of SAC reconstruction, with only 8% of
SAC cubes needing correction by GrimReaper. This enabled lab
workers to shift their focus to BCs, as described below.

Reconstruction of Off BCs The somata of Off BCs were gen-
erally outside €2198, which extended only partially into the INL
(Fig. 1 of Ref. 9). The trunks of candidate BC axons were lo-
cated in the interstices of the INL, and followed into the IPL. If the
axons arborized in the Off region of the INL, they were fully recon-
structed. Cells that violated known BC structures were identified
as amacrine cells and discarded 4.

BC axons were difficult to reconstruct due to poor staining, and
their highly irregular shapes. They could not be accurately recon-
structed (either by online volunteers or lab experts) within the 256°
cubes of EyeWire, which were too small to provide sufficient spa-
tial context. Therefore BCs were reconstructed only by lab workers
using the large subvolumes mentioned above.

Coordinate system For more precise quantification of structural
properties, a new coordinate system was defined by applying a non-
linear transformation to neurons so as to flatten the IPL and make
it perpendicular to one of the coordinate axes. The nonlinear trans-
formation was found by the following steps. First a global planar
approximation to the Off SAC surface was computed. Then the
centroid of all the SACs was projected onto this global plane to de-
fine the origin of the coordinate system. The projection was along
the coordinate axis of the e2198 volume closest in direction to the
light axis.

To correct for curvature, an azimuthal equidistant projection*
of the Off SAC surface onto the global plane was made about the
origin. Then local planar approximations to the SAC surface were
computed in the neighborhoods of every node in a triangular lat-
tice. Ateach point in a triangle, the SAC surface was approximated
by computing the mean of the planar approximations (as quater-
nions with yaw constrained to be zero) for the triangle’s vertices,
weighted by distance of the point from the vertices.

The Off SACs were defined as 32% IPL depth. We also recon-
structed a few On SACs, and defined them as 62%. These choices
placed the edge of the INL at 0%. Structural properties of all cells
were computed based on the locations of their surface voxels after
transformation into the new coordinates.

Classification of Off bipolar cells BC stratification profiles were
computed by dividing surface voxels into 100 bins spanning 0 to
100% IPL depth. Classification into cell types was done by using
methods similar to those described previously '#. The BCs were
split into shallow (BC1/2) and deep (BC3/4) clusters using the 75th
percentile depth of the stratification profile. The BC1/2 cluster was
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further subdivided into two clusters by stratification width, defined
as the difference between 75th and 25th percentile depths. Based
on cells per square millimeter (Extended Data Fig. 6f), we in-
ferred that the wider cluster was BC2 and the narrower cluster was
BC1. These two types were originally defined by molecular cri-
teria®, and our inferred correspondence with structural definitions
is transposed relative to a previous report'4. The BC3/4 cluster
was subdivided into BC4 and BC3 by the 10th percentile depth,
because the molecularly defined BC4 stratifies closer to the INL®.
Finally, BC3 was subdivided into BC3a and BC3b based on axonal
arbor volume, with BC3a having the larger axonal volume. Each of
the above subdivision steps was based on a feature with a roughly
bimodal histogram (Extended Data Fig. 5).

The result still contained a small number of classification errors,
detected when adjacent BCs of the same type overlapped enough
to violate the mosaic property. Corrections were made by an au-
tomatic algorithm that greedily swapped cells from one cluster to
another such that the total overlap between convex hulls of cells of
a given type was minimized. Two swaps were vetoed by an expert
(J.S.K) on the basis of morphological features. In all, six cells were
swapped within BC1/2 and 13 within BC3/4. In the final classifi-
cation, 41, 56, 29, 35, and 34 BCs were identified as types 1, 2, 3a,
3b, and 4, respectively (Extended Data Fig. 6). Cells that violated
the mosaic of all types (7) or had irregular stratification profiles (9)
were discarded as possible reconstruction errors or amacrine cells.

Contact analysis Edges of the affinity graph connecting BC with
SAC voxels were defined as BC-SAC contact edges. For each pair,
the sum of the edges yielded an estimate of contact area. The Eu-
clidean distance separating each BC-SAC pair was computed af-
ter projecting their centers onto the SAC plane. Centers of SAC
somata were manually annotated, and centers of BC arbors were
computed as the centroids of their surface voxels. The pairs were
binned by distance of the BC from the SAC soma. For every pair
in a bin, the fraction of SAC surface area devoted to BC-SAC con-
tact within the convex hull of the BC was computed as the ratio
of BC-SAC contact edges to SAC surface edges within the convex
hull. The latter was estimated by the number of SAC surface vox-
els multiplied by a geometric conversion factor of 1.4 SAC surface
edges per surface voxel. (This factor was estimated by dividing the
total number of SAC surface edges by the total number of SAC sur-
face voxels in the volume.) BC-SAC pairs with fewer than 10,000
SAC surface voxels inside the hull were excluded from the compu-
tation to reduce the effect of fluctuations. The ratios for BCs of the
same type were averaged for each distance bin and multiplied by a
mosaic overlap factor to yield the values in Figure 4d. The mosaic
overlap factor represents the extent to which neighboring convex
hulls overlap one another, which varies by cell type. This factor
was computed by dividing the sum of the hull areas for each cell
by the area of the union of hulls for each cell type. For absolute
rather than fractional areas, edges in the affinity graph were con-
verted to area in um?, using the conversion factor of 291.5 um? per
edge. This factor averages over the different edge orientations and
compensates for voxelization effects. A result very similar to Fig-
ure 4d can also be obtained by an alternative method that is simpler
but does not yield error bars (Extended Data Figure 7c¢).

Co-stratification analysis All SAC surface voxels were binned
by distance from the soma center in the SAC plane. Within each
bin, the stratification profile was computed as for the BCs. The
quartiles (median and 25th and 75th percentiles) are graphed in



Figure 5a. The prediction of contact from co-stratification is based
on the following formalism.

We define the arbor density p,(r) as the surface area per unit
volume at location r of a type a cell with soma centered at the
origin. Its integral [dxdydzp,(r) is the total surface area of the
arbor. We assume that the contact density received by one cell of
type a from all cells of type b is equal to

cap(r) = pa(r)zpb(r_rbi) €)]

The sum over the b mosaic can be approximated by a function that
is independent of x and y,

Y pp(r—ry) = opsy(2) 4
i
where o}, is the number of type b neurons per retinal area and

sp(z) = / dxdy pp(x,y,z) (5)

is the stratification profile of a cell of type b. The SAC arbor den-

sity is assumed radially symmetric, psac(r) = psac (\/)c2 + yz,z) ,
where psac(r,z) can be regarded (up to normalization) as the SAC
stratification profile as a function of distance r = +/x%+y? from
the SAC soma. Integrating the contact density (3) and normalizing
yields the fraction ¢, (r) of SAC area contacted by cell type b as a
function of r,

[ dzpsac(r,z)sp ()
¢(r) = 0p Tdzporc(r) (6)
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Extended Data Figure 1: EyeWire screenshots. a, Numerical score after gameplay of a cube, with leaderboard below. b, Overview
mode with neuron under reconstruction (center), global chat (bottom left), progress bar for neuron (upper left), leaderboard (right),
settings and help (bottom right). ¢, Tutorial play.
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Username* (free text)
Gender*
Male/Female
Age* (free text)
Location*
City, State/Province
Country
Are you...
White or Caucasian
Asian
African American or Black
American Indian or Alaska Native
Hispanic
Pacific Islander
Education*
Middle School
High School - current student
High School
Some College - current student
Some College - not currently a student
Finished College (Undergrad)
Some Graduate School - current Masters student
Masters -- Finished Degree
Some Graduate School - current PhD student
PhD -- Finished Degree
MD/DO
Occupation* (free text)
Do you have prior experience in neuroscience?**
Yes/No
If yes, please explain.**
How long do you play EyeWire each week?*
Less than 1 hour/More than 1 hour
If you play for more than 1 hour per week, how long do you play?
1to 2 hours
3 to 5 hours
6 to 10 hours
11 to 20 hours
21 to 30 hours
31 to 40 hours
41 to 50 hours
More than 50 hours
What scientific purpose does EyeWire serve? (free text)
Why do you play EyeWire? (free text)
How did you discover EyeWire? (free text)
If you could add one feature to EyeWire, what would it be? (free text)
Anything else you would like to add? (free text)

Survey launch date: April 14, 2013. *required question, *question added on 7/7/2013

Extended Data Figure 2: Questionnaire administered to EyeWirers.
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Extended Data Figure 3: EyeWire demographics. Data based on 729 responses to the questionnaire in Extended Data Fig. 2. Age
distribution of (a) all respondents and (b) those among the top 100 players ranked by number of cubes submitted. ¢, Gender distribution
of all respondents and those among the top 100 players. d, Distribution of educational levels.
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Extended Data Figure 4: Entirety of reconstructed SACs. Only the central region of this plexus of SAC dendrites is portrayed in Figure
3b. Scale bar is 50 um.
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Extended Data Figure 5: Clustering procedure for BCs. a, Cells were divided by the 75th percentile of their stratification profiles. b,
The shallow cluster BC1/2 was separated into BC1 and BC2 using stratification width, defined as the difference between 75th and 25th
percentiles. ¢, The deep cluster BC3/4 was divided by 10th percentile into BC4 and BC3. d, BC3 was divided by axonal volume to yield
BC3a and BC3b. Scatter plots of the (e) BC1/2 and (f) BC3/4 divisions show swaps made to eliminate mosaic violations. No swaps
between BC1/2 and BC3/4 were needed.
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Extended Data Figure 6: Mosaics of Off BC types. Reconstructed BCs of types 1, 2, 3a, 3b, and 4 (a through e, respectively). BC1/2
mosaics appear complete. BC3/4 mosaics show some gaps, probably because some thin axons were missed in the INL (Methods). Scale
bar is 50 um. f, Statistics of BC types. Means and standard deviation of the hull area (area of the convex hull around the cell) are in
um?. Type densities are the number of cells (1) divided by the area of the union of hulls of that cell type, and are in cells/mm? without
compensation for tissue shrinkage (Methods). Our densities resemble those of Wassle et al. (2009), who found 2233, 3212, 1866, 3254,
and 3005 cells/mm?>.
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Extended Data Figure 7: Alternative contact analysis. Analysis based on summing over BC-SAC pairs rather than averaging as in
main text. a, Total BC-SAC contact vs. distance from the SAC soma. b, Total SAC area within the union of convex hulls of each BC
type versus distance. The peak at 80 um is the location of maximum dendritic branching. The sharp decrease at larger distances is due
to thinning and termination of branches. The graphs differ across BC types, which in our sample do not cover exactly the same retinal
areas. ¢, Fraction of SAC area in contact with BC types, estimated by dividing contact area (a) by SAC area (b). This estimate is similar
to that of Figure 4d, but lacks error bars. d, Fraction of SAC area contacted by all BC types, the sum of the contact fractions in (c). Also
plotted is the contact predicted by co-stratification, the sum of the curves from Figure 5b.
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Extended Data Figure 8: Proximity versus contact. Neurons that intermingle may or may not contact each other. a, b. Type 2 and 3a
BCs (respectively) contacting SACs. The cells are roughly 24 and 21 um wide. ¢, d. Other SACs are well within the arbors of the same
two BCs, yet make no contact at all.
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Extended Data Figure 9: Model direction selectivity index (DSI) versus stimulus speed. The graphs are for traveling sine waves of
various wavelengths A (units of Ax). Speed is in units of Ax/t. The preferred speed (horizontal location of each peak) is A /(27). Note
that responses are cut off at high speeds by the temporal filters of the model, but the DSI can decay more slowly.
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