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® reconstructing neural wiring diagrams from 3d,
nanoscale images of brain tissue



1. deep networks for boundary detection

2. metrics & cost functions

3. neurite agglomeration



‘connectomics’




‘connectomics’




Which neurons form synaptic connections with each other?

» Associate each dendrite and axon with a parent cell body

» Find synapses (connections) between particular cells






Synapse ldentitication




® Conventional image processing
technigues and even modern ‘off-the-
shelf’ machine learning technigues
make too many mistakes
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ow to Increase accuracy”



Image Segmentation for Connectomics

® |mage may contain trillions of voxels
® Linear time methods

® Need to decompose the problem



Local Boundary Prediction

Global Region Formation




“Sophisticated” Local Boundary Prediction

“Simple” Global Region Formation
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Convolutional Networks

Multi-layer neural network architecture that
can be trained by gradient learning to
interpret images in a desired way.




Why Convolutional Networks?

® No prior research on best feature
representations for EM data

® Not afraid to gather lots of training data



LeNet-5 Digit/Letter Recognition Network

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

6@28x28 52: 1. maps o
- 1. . layer .
6@14x14 \120 g "G: layer  QUTPUT
\‘

| . .
‘ ‘ ‘ Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Yann LeCun and others
Bell Labs (1980's)




Jain et al, ICCV 2007
Turaga et al, NC 2010
Turaga et al, NIPS 2009
Jain et al, CVPR 2010



“Connectomic reconstruction of the IPL in mouse retina”

Helmstaedter et al, Nature 2013
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Natural Image Denoising with Convolutional Networks
Jain & Seung, NIPS 2008



® [akes a long time to learn the parameters
(even on a GPU)

e Computations involved in backpropagation make
(further) parallelization difficult



® Exploit more powertul network architectures

® Explore larger parameter space of cost functions,
representations, etc

® Quickly retrain based on additional labeled data



Deep and Wide Multiscale

Recursive Networks



Network Architecture "Desiderata’

(1) wide feature representation

(2) large field of view

(3) model statistical structure in label-space



(1) Narrow vs Wide Feature Representation

Input
x1 X2 x3 xN
y1 yZ y3 ‘ ‘ ‘ yN
z1 z2 z3 zN

\J-/ node = feature map

output arrow = filter




(1) Narrow vs Wide Feature Representation

Input
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output arrow = filter




(1) Narrow vs Wide Feature Representation

node = image

i W nput arrow = filter

x1

Filter/Receptive Field/Projection/Feature

Random
Hand engineered
Brute-tforce search
Supervised Learning

(kmeans, omp,
autoencoders)



‘ x1 x2

y1 y2
z1 z2

x3

node = feature map

xN

arrow = filter

supervised

output




(2) Field of View

. output
classifier
—_—




(2) Field of View




® Number of layers

®Size of filters
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z1
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Input

joutput

node = feature map

arrow = filter
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® (3) Model Statistical Structure in Label-Space



(3) Model Statistical Structure in Label-Space




(3) Model Statistical Structure in Label-Space

® | abels for neighboring image locations are
correlated (i.e., structured prediction).

® |n supervised image labeling approaches,
predictions for neighboring locations typically only
correlated through dependence on overlapping input
Image patches.



(3) Model Statistical Structure in Label-Space

® (Bayesian) MRF approach: model p(Y) and P(X]|Y)

e Computational expense of probabilistic learning &
iInference can limit model complexity of MRFs in
important ways (Jain 2007, 2009).
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DAWMR Architecture

J

( Architecture of Single lteration

Supervised
Classification
(MLP or SVM)

encoding, pooling,
subsampling)

Unsupervised Feature
Extraction (filtering

Further
Downsampled
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4d affinity graph)

|

4 4 )

DAWMR DAWMR DAWMR
lteration 1 lteration 2 lteration 3

H Affinity Graph Afflnlty Graph H Afflnlty Graph

Input Image

Huang & Jain, ICLR 2014




Training
Pipeline

Unsupervised Feature Learning | — | Feature Extraction Supervised Learning

\| Storage

(HDD or

Implementation
Architecture

Multicore CPU System

Thousands of CPU cores

e distributed CPU feature extraction takes advantage of parallel
file system for accessing raw image data of training examples
spread across large image space

e distributed CPU feature extraction stage allows expensive
operations (sparse coding, multiscale downsampling, etc)
without having to optimize implementation for GPUs

® GPU stage focused on simple and relatively "“stable”
multilayer perceptron computations
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recursive processing

segmented
affinity graph

aftinity graph
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Boundary Prediction Generalization Performance (AUC)

98
95.75
@3.5
91.25
89 1=
Convolutional Network BYANWAYI DAWMR
GPU-based 1000’s of CPUs+GPUs 1000’s of CPUs+GPUs

(weeks) (1 day) (5 days)
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Figure 5: Results on the test set. For Rand Index, z-axis is scaled by the number of clusters in segmentations
generated at various binarization thresholds (the specific thresholds are chosen custom to each methods output,
in order to yield one-thousand evenly spaced quantiles from the analog affinity graph values).

Rand Index:
(Sz = Sj,TZ‘ = T]) -+ 5(Sz 7£ SjaTi 7£ TJ)




1. deep networks for boundary detection

2. metrics & cost functions

3. neurite agglomeration



e \\Vhat to measure”?

® How to optimize?



® Pixel-wise boundary classification accuracy not directly
related to ultimate practical goals involving reconstruction
accuracy.
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Segmentation*® Labeling* Image
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Ground Truth
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Segmentation*® Labeling* Image
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Segmentation*® Labeling* Image
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Rand Index:
1

M&ﬂ==(72N@=%EZEHN&#%E#E)
2/ ij#i

Maximin Affinity Learning of Image Segmentation (Turaga et al., NIPS 2010)



Topology

® Properties of objects (topological spaces) that are
reserved under certain transformations (like bending
nd twisting)

QO O

® Exact shape is not always important to define certain
(very important) mathematical properties



topological equivalence




Digital Topology

® Formalizes continuous topological concepts in the digital
Dlane

® Defines connected objects by discrete adjacency
relationships

® Yields a rigorous connection between a pixel, a binary
labeling, and a segmentation



Warping Error

» Given images L* and T,

Lis a warping of L*onto T, , if

|. L can be obtained by a sequence of
topology preserving operations on L7

2. All differences between L and T,
FE(L,T),occur at non-simple points of L.



Warping Error

The warping error between L* and T is:

D(T||L") = pnin, E(L,T)



Segmentation*® Labeling*

|Il|_|
I&. TR

Segmentation A Labeling A Pixel Error of A:115 Warping Error A: 5

Ground Truth
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Segmentatlon B Labeling B Pixel Error of B: 115 Warping Error B: 0
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terpretation B




dual-optimization with smooth approximation:

—

min  min l; — f;(w :
LD SIS AL

alternate
ménz 1 — fi(w)]7 Lq(ﬁgﬂ o Z 1 — fi(w)]7

gradient descent greedy descent



performance on the test set

Rand index Precision—Recall curve
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1. deep networks for boundary detection

2. metrics & cost functions

3. neurite agglomeration









» Agglomeration as process determined by the “policy” of a
deterministic markov decision process (DMDP)

P State space: segmentation given by current clusters
Action space: agglomeration of any two clusters OR
OR
Objective function: error at end of agglomeration process
according to a specified error metric

» Use technigues from on-policy control in RL to train
function that approximates optimal policy

“Learning to Agglomerate Superpixel Hierarchies”
Jain et al, NIPS 2011
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Learning 3D Mesh Segmentation and Labeling

Evangelos Kalogerakis Aaron Hertzmann Karan Singh

University of Toronto
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SHREC’12 Track: Generic 3D Shape Retrieval

B.Li"*®, A. Godil', M. Aono?, X. Bai®, T. Furuya®, L. Li’, R. Lépez-Sastre®, H. Johan®, R. Ohbuchi’,
C. Redondo-Cabrera’, A. Tatsuma?, T. Yanagimachi7, S. Zhang3

I National Institute of Standards and Technology, Gaithersburg, USA 2 Toyohashi University of Technology, Japan
3 Northwestern Polytechnical University, Xi’an, China 4 Nisca Corp., Yamanashi, Japan
> Department of Signal Theory and Communications, University of Alcald, Spain
6 School of Computer Engineering, Nanyang Technological University, Singapore 7 University of Yamanashi, Yamanashi, Japan
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Figure 2: Feature extraction process.
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Object-Level
Feature Design

"hand-designed” unsupervised &
3d geometry & supervised
morphology machine

descriptors learning




Object-Level
Feature Design

"hand-designed”

3d geometry &
morphology
descriptors




Training set Testing set
. Feature Set Description ACC(%) AUC(%) ACC(%) AUC(%) Dim. Cost

bm mean, median, interface len. 83.64 092.44 80.92 90.46 6 5.7
exp 1 + bm moments 85.27 93.39 82.68 91.64 9 5.7
exp 1 + bm quantiles 84.54 93.11 82.04 91.33 8 5.7
exp 1 + bm quantiles, min/max  85.03 93.36 82.69 91.63 10 79
exp 1 + bm deriv. mean, median 90.31 96.71 88.64 95.73 14 79
exp 1 + all bm deriv. stats 91.85 97.61 89.11 96.05 42 14.0
baseline (| ] exp 1:6) 92.30 97.85 89.41 96.05 49 14.0
baseline (| J exp 1:6) boosting 92.17 97.88 88.56 95.36 49 -

)
<
e

Boundary Map (bm)

COI N B W =

exp 7 + growth 92.55 98.09 89.67 9632 51 1.0
exp 7 + proximity 92.18 97.85 89.09 9602 50 489.1
exp 7 + angles 0574 9925 89.65 9627 82 13.0

exp 7 + size 93.31 98.43 90.28 96.61 53 1.9
exp 7 + rays 94.36 98.92 90.06 96.52 01 442
exp 7 + shape diam. quantiles 93.52 98.56 89.82 96.46 59 402.5
exp 7 + shape diam. moments 94.26 98.72 86.32 92.14 57 402.5
exp 7 + shape context 94.71 99.03 89.91 96.50 69 5.5
exp 7 + convex hull 93.47 98.56 89.97 96.74 57 8.7
exp 7 + level sets overlap 92.23 97.90 89.16 96.08 55 464.0
exp 7 + level sets gradient v.f. 93.20 98.28 89.59 96.17 53 35.0
exp 7 + level sets orientation 93.74 98.61 90.13 96.75 55 2294

exp 7 + SIFT soft v.q. 99.04 99.93 88.75 95.67 149 56.0
exp 7 + image moments 93.16 98.29 89.26 96.12 53 4.1
exp 7 + image deriv. stats 95.58 99.22 89.09 95.61 85 5.8
exp 7 + image stats 96.42 99.43 88.85 95.73 94 58

all hand-designed (| J exp 1:24)  99.98 99.98 92.33 9761 363 -




Object-Level
Feature Design

unsupervised &

supervised

machine

TN learning
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Object-Level
Feature Design

unsupervised &

supervised

machine

TN learning




Segments Pooling region Rendering




Precision—Recall of Connected Pixel-Pairs
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Next few years...

» Allen Brain Institute: mouse visual cortex

» 1 cubic mm at 5x5x30nm ~= 1 petabyte image

» Combined functional and anatomical data.



Whole Mouse Brain?

» Multibeam SEM: 100 TB/day

» Entire brain: 50-100 petabytes of raw image data



Google: Connectomic Reconstruction

» Scalable infrastructure for petabyte scale image storage and
manipulation.

» Scalable image alignment.
» Deep networks for automated image annotation and reconstruction.

» Services provided to the scientific community via Google cloud
infrastructure.



® analysis of wiring diagram structure
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® analysis of wiring diagram structure
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a) Sequenced DNA fragments
Fly | A l B 1 C ! D .

Mouse | B | 3 [ A

Human [ B | A - T

b) Comparing similar regions
Fly [ —
Mouse | A

Human [ A

c) Searching for high similarity|

Fly ATCGGATTTGACCAGTCAGGATACATTAGCTAAGTCCGGATCGGCATCGATTCG
Mouse

Hljman .C -

Region of high similarity
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® How to analyze and compare neural
wiring diagrams to each other?



Segmentation*® Labeling* Image
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