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!

• reconstructing neural wiring diagrams from 3d, 
nanoscale images of brain tissue



1. deep networks for boundary detection  
 
 

2. metrics & cost functions  
 
 

3. neurite agglomeration



“connectomics”



“connectomics”



Which neurons form synaptic connections with each other? 

‣ Associate each dendrite and axon with a parent cell body  

‣ Find synapses (connections) between particular cells





Synapse Identification



• Conventional image processing 
techniques and even modern ‘off-the-
shelf’ machine learning techniques 
make too many mistakes
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• How to increase accuracy?



• Image may contain trillions of voxels 

!

• Linear time methods 

!

• Need to decompose the problem 

!

!

Image Segmentation for Connectomics



Global Region Formation

Local Boundary Prediction



“Simple” Global Region Formation

“Sophisticated” Local Boundary Prediction



input image local boundaries nonlocal 
segmentation



Multi-layer neural network architecture that 
can be trained by gradient learning to 
interpret images in a desired way.

Convolutional Networks



• No prior research on best feature 
representations for EM data  

• Not afraid to gather lots of training data  
 

Why Convolutional Networks?



LeNet-5 Digit/Letter Recognition Network

Yann LeCun  and others 
Bell Labs (1980’s)



Jain et al, ICCV 2007
Turaga et al, NC 2010

Jain et al, CVPR 2010
Turaga et al, NIPS 2009



Helmstaedter et al, Nature 2013

“Connectomic reconstruction of the IPL in mouse retina”



CLEAN NOISY PSNR=14.96 CN2 PSNR=24.25

BLS-GSM PSNR=23.78 FoE PSNR=23.02

CLEAN CN2

FoEBLS-GSM

Jain & Seung, NIPS 2008

test set performance

Natural Image Denoising with Convolutional Networks



• Takes a long time to learn the parameters  
(even on a GPU) 

!

• Computations involved in backpropagation make 
(further) parallelization difficult



• Exploit more powerful network architectures  
 

• Explore larger parameter space of cost functions, 
representations, etc  
 

• Quickly retrain based on additional labeled data



• Deep and Wide Multiscale Recursive Networks



(1) wide feature representation  

(2) large field of view 

(3) model statistical structure in label-space  

Network Architecture “Desiderata”
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(1) Narrow vs Wide Feature Representation  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input
f(linear filtering)

x1

   node = image  
  arrow = filter

Filter/Receptive Field/Projection/Feature

Random 
Hand engineered 
Brute-force search 

Supervised Learning 
Unsupervised Learning (kmeans, omp, 

autoencoders)

(1) Narrow vs Wide Feature Representation  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•Number of layers 

!

•Size of filters
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Foveated Pooling



• (3) Model Statistical Structure in Label-Space



(3) Model Statistical Structure in Label-Space



• Labels for neighboring image locations are 
correlated (i.e., structured prediction).  
 

• In supervised image labeling approaches, 
predictions for neighboring locations typically only 
correlated through dependence on overlapping input 
image patches.

(3) Model Statistical Structure in Label-Space



• (Bayesian) MRF approach: model p(Y) and P(X|Y)  
 
 

• Computational expense of probabilistic learning & 
inference can limit model complexity of MRFs in 
important ways (Jain 2007, 2009).  

(3) Model Statistical Structure in Label-Space



input

output

x1

y1

z1

x2

y2

z2

x3

y3

z3

xN

yN

zN

x

y

z

x

y

z

x

y

z

x

y

zN

x

y

z

x

y

z

x

y

z

x

y

z

mlp_1

mlp_2

unsupervised

supervised

   node = feature map 
  arrow = filter



input

output

x

y

z

x

y

z

x

y

z

xN

yN

zN

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

mlp_1

mlp_2

unsupervised

supervised



DAWMR
Iteration 1

DAWMR
Iteration 3

Original Scale Downsampled Further
Downsampled In

pu
t C

ha
nn

el
s

(3
d 

im
ag

e 
+

4d
 a

ffi
ni

ty
 g

ra
ph

)

.  .  .

1 2 1000.  .  .

. .
 .

1 2 1000.  .  .

. .
 .

1 2 1000.  .  .

. .
 .

Un
su

pe
rv

ise
d 

Fe
at

ur
e 

Ex
tra

ct
io

n 
(fi

lte
rin

g,
 

en
co

di
ng

, p
oo

lin
g,

 
su

bs
am

pl
in

g).  .  . .  .  .

1 2 200.      .      .

x y z

Su
pe

rv
ise

d
Cl

as
sifi

ca
tio

n
(M

LP
 o

r S
VM

)

Input Image Affinity Graph Affinity Graph Affinity Graph

Architecture of Single Iteration

DAWMR
Iteration 2

DAWMR Architecture

Huang & Jain, ICLR 2014



Unsupervised Feature Learning Feature Extraction Supervised Learning
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Multicore CPU System

Thousands of CPU cores

GPU

• distributed CPU feature extraction takes advantage of parallel 
file system for accessing raw image data of training examples 
spread across large image space 

• distributed CPU feature extraction stage allows expensive 
operations (sparse coding, multiscale downsampling, etc) 
without having to optimize implementation for GPUs  

• GPU stage focused on simple and relatively “stable” 
multilayer perceptron computations



!

S. Xu, Z. Lu, Ian M., H. Hess	





!

S. Xu, Z. Lu, Ian M., H. Hess	





image affinity graph
segmented 

affinity graph

DAWMR 
iteration 1

DAWMR 
iteration 2

DAWMR 
iteration 3

recursive processing
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Convolutional Network DAWMR             DAWMR
GPU-based 
(weeks)

Boundary Prediction Generalization Performance (AUC)

1000‘s of CPUs+GPUs 
(1 day)
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(5 days)

Huang & Jain, In Review
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Huang & Jain, In Review



1. deep networks for boundary detection  
 
 

2. metrics & cost functions  
 
 

3. neurite agglomeration



• What to measure?  
 
 
 

• How to optimize? 



• Pixel-wise boundary classification accuracy not directly 
related to ultimate practical goals involving reconstruction 
accuracy.
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Maximin Affinity Learning of Image Segmentation (Turaga et al., NIPS 2010)



Topology

• Properties of objects (topological spaces) that are 
preserved under certain transformations (like bending 
and twisting) 

!

• Exact shape is not always important to define certain 
(very important) mathematical properties  



topological equivalence



Digital Topology
!

• Formalizes continuous topological concepts in the digital 
plane 

!

• Defines connected objects by discrete adjacency 
relationships  

• Yields a rigorous connection between a pixel, a binary 
labeling, and a segmentation  



Warping Error
!

‣ Given images     and   ,  L⇤ T

is a warping of     onto   , L L⇤ T , ifL C (L⇤)T

T

1.   can be obtained by a sequence of 
topology preserving operations on   .  
!

2. All differences between    and    ,  
          , occur at non-simple points of   .

L
L⇤

L
L

E(L, T )

Jain et al, CVPR 2010  



Warping Error

The warping error between      and     is:L⇤ T

D(T ||L⇤) = min
LC(L⇤)T

|E(L, T )|

Jain et al, CVPR 2010  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dual-optimization with smooth approximation:

min
~w

min
LC(L⇤)FI (~w)

X

i

[li � fi(~w)]2

alternate

min
LC(L⇤)FI (~w)

X

i

[li � fi(~w)]2min
~w

X

i

[li � fi(~w)]2

gradient descent greedy descent

Jain et al, CVPR 2010  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1. deep networks for boundary detection  
 
 

2. metrics & cost functions  
 
 

3. neurite agglomeration







!

‣ Agglomeration as process determined by the “policy” of a 
deterministic markov decision process (DMDP) 

!

‣ State space: segmentation given by current clusters 
Action space: agglomeration of any two clusters  OR 
                          query a human OR re-image sample                
Objective function: error at end of agglomeration process 
according to a specified error metric with a given cost 

!

‣ Use techniques from on-policy control in RL to train 
function that approximates optimal policy

“Learning to Agglomerate Superpixel Hierarchies”  
Jain et al, NIPS 2011



negative positive







= [1 0 1 0 . . . . . . . .1 1 1 0 1] 

{0,1}N

[x1 x2 . . . xk]   

Rk (k << N)

dimensionality 
reduction



Object-Level  
Feature Design

 
“hand-designed” 
3d geometry & 

morphology 
descriptors 

 
unsupervised & 

supervised 
machine 
learning 

 



Object-Level  
Feature Design

 
“hand-designed” 
3d geometry & 

morphology 
descriptors 





Object-Level  
Feature Design

 
unsupervised & 

supervised 
machine 
learning 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Object-Level  
Feature Design

 
unsupervised & 

supervised 
machine 
learning 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‣ Allen Brain Institute: mouse visual cortex 

!

‣ 1 cubic mm at 5x5x30nm ~= 1 petabyte image 

‣ Combined functional and anatomical data.

Next few years…



‣ Multibeam SEM: 100 TB/day 
 

‣ Entire brain: 50-100 petabytes of raw image data 

Whole Mouse Brain?



‣ Scalable infrastructure for petabyte scale image storage and 
manipulation. 

!

‣ Scalable image alignment. 

!

‣ Deep networks for automated image annotation and reconstruction. 

!

‣ Services provided to the scientific community via Google cloud 
infrastructure.

Google: Connectomic Reconstruction
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!

!

• analysis of wiring diagram structure
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• analysis of wiring diagram structure
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• How to analyze and compare neural 
wiring diagrams to each other?
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