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The origin of the problem

Understanding complex, noisy data streams Is a critical part of cognrtion.
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Variation Makes Object Recognition Challenging
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View: position, size, pose, illumination variation
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The origin of the problem

Understanding complex, noisy data streams Is a critical part of cognition.
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The origin of the problem

Understanding complex, noisy data streams is critical part of cognition.
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The origin of the problem

Understanding complex, noisy data streams is critical part of cognition.
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variation sources; speaker identity

background noise

reverberation



The origin of the problem

Axes of natural variation of natural
“physics” representation of world

e.g.

retinal photoreceptor voltage
or hair-cell point amplitudes




The origin of the problem

Axes of natural variation for
natural behavioral events
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deforming face moving in complex-
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The origin of the problem

Axes of natural variation for
natural behavioral events
(e.g. deforming face moving in
complex-lighted environment)

are misaligned with

Axes of natural variation of natural
“physics” representation of world
e.g. retinal photoreceptor voltage
or hair-cell point amplitudes
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The origin of the problem

visual auditory
cortex

cortex

l l

“"Mercedes behind
Lamborghini, on a field
in front of mountains.”

"Hannah I1s good at compromising”



The origin of the problem

visual audrtory
cortex v cortex
"“Mercedes behind e “Hannah is good at

Lamborghini, on a field /\ compromising

N front of mountains.’



Sensory cascade

visual
cortex

audrtory
cortex

“Mercedes behind Lamborghini, on

5 field in front of mountains” Hannah Is good at compromising



Ventral Stream = Connected series of brain areas
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. representation read-out .
Stimulus > Neurons > Behavior

V1 V2|

visual
representation

~ Depth relationships




Multi-array Electrophysiology Experiment

Multi-array electrophysiology in macaque V4 and IT.
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Multi-array Electrophysiology Experiment

Multi-array electrophysiology in macaque V4 and IT.
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10mm

About 300 total sites

Ha Hong Jim DiCarlo



Multi-array Electrophysiology Experiment

5760 imasces Low variation
5 a I ..+ 640 images
64 objects Medium variation

Q } ' -+ 2560 images

High variation

uncorrelated photo backgrounds ‘ /y . .- 2560 images

Animals Boats Cars Chairs Faces Fruits Planes Tables

8 categories




Multi-array Electrophysiology Experiment

About 300 total sites

Output = Binned spike counts /0Oms-1/0ms post stimulus presentation
averaged over 25-50 reps of each image.
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Neural-Behavior Decoding

Animal or not?

Img 5760 /

linear combination of unrts
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Car or not!

Chair or not!?

Face or not!



Decoding Behaviorally Output from Neural Populations

V4 loses out at higher variation:

Basic
M categorization
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Decoding Behaviorally Output from Neural Populations

V4 loses out at higher variation:

... but humans are much less affected.
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I'T Neurons Track Human Performance

V4 loses out at higher variation:

... but humans are much less affected.

... as Is the I'T neural population.
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T Neurons Track Human Performance

V4 loses out at higher variation:

... but humans are much less affected. Bac
asic

M categorization

... as Is the I'T neural population.
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At high variation levels, IT much better than V4 and existing models.



I'T Neurons Track Human Performance

Human Performance

I'T Population
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Neural Decode Performance

® | ow-Variation Face subordinate tasks.
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Human Rhesus monkey
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Upshot: human and non-human primate basic level core object percept,
(sp. identification) are indistinguishable
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Does not depend on reporting effector (touch vs. eye movement)

C
R. Rajalingham, K Schmidt, J.J. DiCarlo, Vision Sciences Society (2014)
R. Rajalingham, K Schmidt, J.J. DiCarlo, J. Neuroscience (2015)

Adapted from Motter and Mountcastle 1981



Ventral Stream as Stacked Cortex

GOAL: Predictive model of single-nheuron
responses throughout the ventral stream to
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Ventral Stream as Stacked Cortex

GOAL: Predictive model of single-nheuron
responses throughout the ventral stream to

| Image-computable 2. Predictive 3. Mappable

— Convolutional Neural Networks (CNNs)
Fukushima, 1980; Lecun, 1995



Goal: Predictive Model of Ventral Stream

Kunihiko Fukushimal

Tokyo, November 2015



Goal: Predictive Model of Ventral Stream

Kunihiko Fukushimal

Developed neocognitron
while Japan Broadcasting
Corporation (NHK)

... office directly next
door to Keisuke Toyama and
Kelji Tanaka

Tokyo, November 2015



Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations
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Layer components are basic neural-like operations.



Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations

neuro:

data:

Filter
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Layer components are basic neural-like operations.

single-unit

> competitive
activations

inhibrtion

complex cells

“"AND" operation adding robustness
by limrting dynamic by dimension
range reduction

put results back into
standard range

Hubel and Wiesel (1965-1975) Lecun (2004), Carandini et. al (2005),
Lennie & Movshon (2005) , DiCarlo (2012)



Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations

» Applied convolutionally — same at all Iocahons approx. retinopy

Operations in Linear-Nonlinear Layer
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Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations

» Applied convolutionally — same at all locations: approx. retinopy

image-like output

Operations in Linear-Nonlinear Layer

®®,
X @,
Filter

Threshold Pool Normalize




Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations

» Applied convolutionally — same at all locations: approx. retinopy

one slice of output
for each filter pattern

Operations in Linear-Nonlinear r
@@

X @,
Filter

Threshold Pool Normalize




Hierarchical Convolutional Neural Networks

Lower areas, (RGC, LGN,V 1) have been reasonably captured by single-
layer convolutional model: ~50% of variance explained. carandini et 2005), Lennic &

Movshon (2005)




Hierarchical Convolutional Neural Networks

Where did this come from?

(1) "Hubel and Wiesel's Inturtion”

— e.g. there Is a "'fixed basis set”
~1970s and formalized later

that just “makes sense” If we're
smart enough

(2) Sparse Coding Foldiak, Olshausen, —neurons have to represent their
mid 1990s environment, as efficiently as possible



Hierarchical Convolutional Neural Networks

Lower areas, (RGC, LGN,V 1) have been reasonably captured by single-
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Neural Fitting Strategy?

Huge number of parameters consistent with HCNN concept.
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Neural Fitting Strategy?

Huge number of parameters consistent with HCNN concept.
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Neural Fitting Strategy?

Huge number of parameters consistent with HCNN concept.
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I. filter parameters: continuous valued pattern templates — “network contents”



Neural Fitting Strategy?

Huge number of parameters consistent with HCNN concept.
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. architectural params: (# layers, # filters, receptive field sizes, &c) — “network structure”
I. filter parameters: continuous valued pattern templates — “network contents”

: How to discover the “right” parameters to understand real cortex?



Hierarchical Convolutional Neural Networks

Where did this come from?
Recall:

(1) "Hubel and Wiesel's Inturtion”™
~1970s and formalized later

— e.g. there Is a "'fixed basis set”
that just “makes sense” If we're
smart enough

(2) Sparse Coding Foldiak, Olshausen, —neurons have to represent their
mid 1990s environment, as efficiently as possible



Hierarchical Convolutional Neural Networks

Where did this come from?

Recall:

(1) "Hubel and Wiesel's Inturtion”™ — e.g. there is a "“fixed basis set”
~1970s and formalized later that just "makes sense” If we're

REALLY HARD TO GrENrEBALIZE
TO MULTI-LAYER NETWORKS

(2) Sparse Coding Foldiak, Olshausen, —neurons have to represent their
mid 1990s environment, as efficiently as possible



Neural Fitting Strategy?

Huge number of parameters consistent with HCNN concept.
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Neural Fitting Strategy?

Huge number of parameters consistent with HCNN concept.
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Neural Fitting Strategy?

Huge number of parameters consistent with HCNN concept.
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...not enough neural data to

constrain model class. Galiant 2007 Rust &
Movshon (2006)

Overfitting.



Optimize for Performance, Test Against Neurons

Visual Recognition Task
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Spatial Convolution
over Image Input

i




Optimize for Performance, Test Against Neurons

Visual Recognition Task

Spatial Convolution
over Image Input

100ms

LA SR —  Visual —>
Presentation




Optimize for Performance, Test Against Neurons

|. Performance: accuracy on a challenging, high-variation visual
object categorization task.

2. Neural predictivity: the ability of model to predict each
individual neural site’s activity.



Optimize for Performance, Test Against Neurons

|. Performance: accuracy on a challenging, high-variation™ visual
object categorization task.

2. Neural predictivity: the ability of model to predict each
individual neural site’s activity.

*challenging for neural network engineers, not the
animal




Optimize for Performance, Test Against Neurons

|. Performance: accuracy on a challenging, high-variation* visual
object categorization task.

2. Neural predictivity: the ability of model to predict each
individual neural site’s activity.

Our hypothesis: Performance (1) — neural predictivity (2).

*challenging for neural network engineers, not the
animal




Initial Validation of Idea

High-throughput experiments to directly test the relationship
between performance and IT neural predictivity.

» Random selection of model parameters; measure performance and
neural ) red| CJEIVIJEY Pinto et. al (2008, 2009)



Initial Validation of Idea
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Initial Validation of Idea

High-throughput experiments to directly test the relationship
between neural predictivity and performance.

» Random selection of model parameters; measure performance and
neural ) red| CJEIVIJEY Pinto et. al (2008, 2009)

» Optimize parameters for performance; measure neural predictivity. opmizton

techniques: BergstraYamins & Cox (2013)



Initial Validation of Idea

performance-

optimized
r=0.79 £ .05

2000)

(N

#®¢ Random selection

e®¢ Performance Optimized

0.75

0,160 0.65 0.!70
Performance

0.55

0.50

03

0.2

1
0.0

ANAIDIPaId 1|

=01}

-0.2

Yamins* and Hong* et. al. PNAS (2014)



Initial Validation of Idea

High-throughput experiments to directly test the relationship
between neural predictivity and performance.

» Random selection of model parameters; measure performance and
neural ) red| CJEIVIJEY Pinto et. al (2008, 2009)

» Optimize parameters for performance; measure neural predictivity opmizton

techniques: BergstraYamins & Cox (2013)

» Optimize parameters for neural predictivity; measure performance



Performance vs | T predictivity: Predictivity-Optimized
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Performance vs | T predictivity: Predictivity-Optimized

Performance Is a potentially very sood driver of neural prediction.
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Performance vs |1 predictivity

®®¢ Random selection

#®¢ Performance Optimized

e®¢ [T-predictivity Optimized
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Performance vs |1 predictivity

Really want to be here:

But, not doing that well.
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Optimization Strategy

.. architectural params: (# layers, # filters, receptive field sizes, &c) — “network
structure”

— Automated meta-parameter optimization in high-dimensional discrete parameter spaces
Bergstra Yamins & Cox (2013)

— Ensembles of models chosen through modified boosting vamins ec.al (2013, 2014)



Optimization Strategy

.. architectural params: (# layers, # filters, receptive field sizes, &c) — “network
structure”

— Automated meta-parameter optimization in high-dimensional discrete parameter spaces
Bergstra Yamins & Cox (2013)

— Ensembles of models chosen through modified boosting vamins ec.al (2013, 2014)

I. filter parameters: continuous valued pattern templates — “network contents”

— GPU-accelerated stochastic gradient descent Ppinto et al. (2009), Krizhevsky et.al. (2012)

Gradient descent eq; dcza — —)\(t) , <VpaL(5L’)>aceD L = loss function

A = learning rate
D = dataset

In current practice:

L = loss computed from large numbers of externally-provided object category
labels.



Model Training Regimen

ImageNet (2012). Thousands of images in thousands of categories.

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release = Natural object
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Model Training Regimen

train: real photos

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release ' Natural object
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Model Training Regimen

train: real photos

Treemap Visualization | Images of the Synset | Downloads

A  ImageNet 2011 Fall Release ' Natural object
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Model Training Regimen

train: real photos

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release ' Natural object
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Model Training Regimen

train: real photos

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release ' Natural object
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Performance Generalization
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T Neurons Track Human Performance

V4 loses out at higher variation:

... but humans are much less affected. Bac
asic

M categorization

... as Is the I'T neural population.
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Yamins* and Hong* et. al. PNAS (2014)
At high variation levels, IT much better than V4 and existing models.



Performance Comparison

At high variation levels, IT much better than V4 and existing models
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Yamins* and Hong* et. al. PNAS (2014)

New model comparable to [T / human performance levels.



Ventral Stream as Stacked Cortex

GOAL: Predictive model of single-nheuron
responses throughout the ventral stream to

Get quantitative hypothesis

for the network [ ARy
Neuron 1

that generated Neuron2 || | | |
. N 3

-
It
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Predicting |T Neural Responses

IT Site 150 IT Site 56 IT Site 42

Response
Magnitude

Images sorted first by category, then variation level.

Neural data

Model prediction



Key Underlying Principle

IT Explained Variance (%)
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Yamins™ and Hong* et. al. PNAS (2014)
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Captures low variation image response patterns ...

/ W) L AR L
I ' VA AR MR, \ lom, P

Animals Boats Cars Chairs Faces Fruits Planes Tables

Neural data

Model prediction



/ il A W
I VA AR MR, \ lom, P

Animals Boats Cars Chairs Faces Fruits Planes Tables

Neural data ... but fails to capture higher
variation response patterns.

Model prediction



VSV WA

Animals Boats Cars Chairs Faces Fruits Planes Tables

Neural data Model prediction



Layer

Layer

Layer

Animals

Boats

Cars

Neural data

Chairs

Faces Fruits

Model prediction

Planes

Tables



Building tolerance while maintaining selectivity

Animals Boats Cars Chairs Faces Fruits Planes Tables



Yamins* and Hong* et. al. PNAS (2014)
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Predicting |T Neural Responses

: Yamins™ and Hong* et. al. PNAS (2014)
Performance constraints
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Predicting |T Neural Responses

, Yamins™ and Hong* et. al. PNAS (2014)
Performance constraints
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Predicting IT Neural Responses

Performance constraints + architectural constraints = better neural prediction
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Predicting |T Neural Responses

What about intermediate layers?

. compare all model layers to intermediate visual areas (V4)



Predicting V4 Neural Responses

V4 unit 60

| —

Animals  Boats Cars Chairs Faces Fruits Planes  Tables



Predicting V4 Neural Responses

V4 unit 60

Top
Layer

Layer

Animals  Boats Cars Chairs

Neural data

Faces Fruits

Model prediction

Planes

Tables



Predicting V4 Neural Responses

Top
Layer

Layer

Layer

Layer
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Neural data

Model prediction
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Yamins* and Hong* et. al. PNAS (2014)
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Layer-area correspondence

Investigating fits as a function of model layer:

IT Predicitivity

V4 Predicitivity

Explained Variance

o
—

1 2 3 Top 1 2 3 Top
MOdel Layers Yamins* and Hong* et. al. PNAS (2014)

IT fit Increases at each layer. In contrast, V4 fit peaks and then
coes down.



Layer-area correspondence

Model output at lowest layer resembles Gabor wavelets:

Layer | Filters

In submission: model lowest layer Is best explanation of
imaging data inV|. (with Darren Seibert and Justin Gardner)



Behavioral “Top-Down’ constraints

Complement standard "“from below’ approach ...
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Behavioral “Top-Down’ constraints

Complement standard "“from below’ approach ... with behavioral constraints
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Behavioral “Top-Down’ constraints

Complement standard "“from below’ approach ... with behavioral constraints




Behavioral “Top-Down’ constraints

Complement standard "“from below’ approach ... with behavioral constraints

Similar ideas and results:
Khaligh-Razavi & Kriegeskorte (2014),
Guclu & Van Gerven (2015), Cichy & Oliva (2015)



Beyond categorization

Category

[dentity



Beyond categorization

Position




Beyond categorization

: Size




Beyond categorization

Aspect Ratio
and Angle




Beyond categorization

We can quickly assess the scene as a whole.
Category

Bounding Box

Identity
Aspect Ratio
X and Y Axis Major Axis Length
Position
Major Axis Angle
Perimeter
. 2-D Retinal Area Pose in
i each axis

3-D Object Scale




Where and how are all these properties coded neurally? Category

Identity

Position

Size

Bounding Box

Aspect and Angle

Pose




Beyond categorization

“Standard word model” predicts: not at the top of the ventral
stream.

Aggregation over identity-preserving
transformations, e.g. translation.

\_

§&80 08



Beyond categorization

“Standard word model” predicts: not at the top of the ventral
stream.

Aggregation over identity-preserving
transformations, e.g. translation. categorization

Receptive Field Size 1

Category Invariance T




Beyond categorization

“Standard word model” predicts: not at the top of the ventral
stream.

Aggregation over identity-preserving
transformations, e.g. translation. categorization

IT

Receptive Field Size 1

Category Invariance T

(e.g.) Position Sensitivity 1
S50 0s

position / size estimation




Where and how are all these properties coded neurally? Category

Identity

dorsal stream?

Position

Size

Bounding Box

Aspect and Angle

Pose




Beyond categorization

Unexpected observation: Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release = Natural object
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Training on _ Increased performance on
categorization task position estimation task.

even though the goal was to become INVARIANT to position



Beyond categorization

Category optimization = improved performance on non-categorical tasks.

0.85- 0.35
- X-axis Position %71 3-D Object Scale "g’ Z-Axis Rotation 3
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Categorization Performance

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

Correlation with
Cat. Perf.

Suborordinate Identification

Major Axis Angle
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3-D Object Scale
2-D Retinal Area
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X-Axis Size
X-Axis Size
Bounding Area
Perimeter
Y-Axis Position

X-Axis Rotation



Beyond categorization

Unexpected observation #2:

o ° Categorization
S

Treemap Visualization Images of the Synset Downloads C

A  ImageNet 2011 Fall Release ' Natural object CU
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Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Beyond categorization

Unexpected observation #2:

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release ' Natural object
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Beyond categorization

For all tasks of visual interest we could measure in our test dataset:

0.9 Categorization 0.9 X-Axis Position

0.5r

01

3-D Object Scale Z-Axis Rotation

0.7f 0.35F

Test Performance

0.25}

015

0.05}

Model Layers

Performance on non-categorical tasks increases at each layer.



What do the data say?



Population Decoding

Categorization |[dentification
0.68} 0.361
0.34} 0.18!
0.0 0.0

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

V4 cortex

T cortex

V| -like model — Dxe| CONtrol



Population Decoding

Categorization |[dentification

0.68F 0.361

0.34} 0.18!

0.0 0.0
X-axis Position Y-axis Position
0.63 | 0.66 |
0.32 0.33 1
0.0 0.0

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

V4 cortex

T cortex

V| -like model — Dxe| CONtrol



Population Decoding

IT >V4, VI

for all tasks

V4 > V|

for most tasks

Categorization Identification 2-D Retinal Area Perimeter 3-D Object Scale
0.68f 0.36 0.57 0.61 0.61
0.34} 0.18 10.28 0.31 0.30
0.0 0.0 0.0 0.0 | 0.0
X-axis Position Y-axis Position Major Axis Length Aspect Ratio Major Axis Angle
0.63 0.66 |-
0.61 0.56 047
0.33
0.32 0.31 0.28 0.23
0.0 0.0 0.0 0.0
X-axis Size Y-axis Size Bounding Box Area Z-axis Rotation Y-axis Rotation X-axis Rotation
058 0.58 0.55 0.40 0.18
0.29 ' I 0.29 0.28 0-20 0.09
0.0 . | 0.0 0.0 0.0 0.0

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

T cortex V4 cortex

V| -like model — Dxe| CONtrol



Population Decoding

“Standard” receptive field-mapping stimuli w/ position and orientation variation:

7
X-position

Y-position

Orientation




Population Decoding

VI >V4,|T for‘standard’ tasks

X-Position Y Position
|

| 06}

0.0

Orientation

0.4} |

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

V4 cortex

T cortex

V| -like model — Dxe| CONtrol



Human Psychophysical Measurements




Monkey Neurons vs Humans

performance ~ k * log(N)

Basic Categorization Subordinate Identification
1.2 ///
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number of neural sites

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Monkey Neurons vs Humans

Basic Categorization Subordinate Identification X-axis Position Y-axis Position

Fraction of Human Performance
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10* 10° 10"

Number of Neural Sites

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Somewhat newish ideas about [T

State of knowledge
from previous studies . . .

Categorization
1
(known)
V1 V2 V4 IT

Orthogonal Properties

?? ?? ?? ??

0 j(known)

V1 V2 V4 IT

Depth Along Ventral Stream
(increasing receptive field size —)

Population Decode Performance
(relative to human performance)
o




Somewhat newish ideas about [T

Population Decode Performance

(relative to human performance)

State of knowledge Multiple hypotheses consistent with
from previous studies . . . the existingdata...
Categorization H1

(\«\O\Nm

V1 V2 V4 IT

\/1 \/2 V4 IT

Orthogonal Properties

?? ?? ?? ??

5(known)

V1 V2 V4 IT

Depth Along Ventral Stream
(increasing receptive field size —)

Hl: Tolerance /
sensitivity
tradeoff?



Somewhat newish ideas about [T

Population Decode Performance
(relative to human performance)

State of knowledge
from previous studies . . .

Categorization
1
(KnO\Nn)
V1 V2 V4 IT 0

Multiple hypotheses consistent with

the existing data . . .
H1

H2

Orthogonal Properties

V1 V2 V4 I'T

?? ?? ?? ??
5(known) 0
V1 V2 V4 IT
Depth Along

V1 V2 V4 IT

Ventral Stream

(increasing receptive field size —)

V1 V2 V4 I'T

H3: Information
preservation?



Somewhat newish ideas about [T

Population Decode Performance

(relative to human performance)

State of knowledge
from previous studies . . .

Categorization

(\«\O\Nm

V1

27

V2

??

V4 IT

Orthogonal Properties

?? ??

j(known)

V1

V2

V4 IT

Multiple hypotheses consistent with

the existing data . . .
H1

H2

0

V1 V2 V4 I'T

H4

V1 V2 V4 IT

Depth Along Ventral Stream

(increasing receptive field size —)

V1 V2 V4 IT



Somewhat newish ideas about [T

Population Decode Performance
(relative to human performance)

State of knowledge
from previous studies . . .

Categorization
1
(KnO\Nn)
V1 V2 V4 IT 0

Multiple hypotheses consistent with

the existing data . . .
H1

H2

Orthogonal Properties

V1 V2 V4 I'T

H4

?? ?? ?? ??
5(known) 0
V1 V2 V4 IT
Depth Along

(increasing receptive field size —)

V1 V2 V4 IT

Ventral Stream

VA1 V2 V4 I'T

H4: Simultaneous build-up of encoding



Somewhat newish ideas about [T

|.1T 1s NOT invariant. Strict generalization of simple-to-complex cells: no.

2. "Lower-level” properties are not that low-level — at least, with complex objects
and backgrounds.

3. Categorization and non-categorical properties “go together” — not just that
“not all (e.g.) position information is lost™ (MacEvoy 2013, DiCarlo 2003)

Provides support to a hypothesis for what |T does:

“Inverting the generative model of the scene”



Auditory Cortex

Alex Kell Sam Norman- Josh McDermott
Halgnere



Audrtory Cortex Background
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Audrtory Cortex Background

Medial —Y"
geniculate (.0

S e Primary auditory
cortex

(early)
visual
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Cochlea

How are circuits making sense of complex sound patterns?



Core / Belt / Parabelt Structure

Core area Belt area

*monkey
*

Parabelt area

Tramo et. al, Curr. Opin. Neuro. (1999)



Core / Belt / Parabelt Structure

Core area Belt area

Tramo et al, Curr. Opin. Neuro. (1999) , %monkey

Parabelt area *



Core / Belt / Parabelt Structure

Core area Belt area

Tramo et al, Curr. Opin. Neuro. (1999) , %monkey

Parabelt area *



Core / Belt / Parabelt Structure

Spatiotemporal filtering? Shamma, 2005
Core area Belt area

Tramo et al, Curr. Opin. Neuro. (1999) %monkey

Parabelt area *



Core / Belt / Parabelt Structure

Spatiotemporal filtering? Shamma, 2005 N
Core area Belt area

Tramo et al, Curr. Opin. Neuro. (1999) %monkey

Parabelt area *

i



Core / Belt / Parabelt Structure

Spatiotemporal filtering! Shamma, 2005 077
Core area Belt area

Tramo et. al, Curr. Opin. Neuro. (1999) %monkey

Parabelt area *

i

Our goal: use computational models to help deepen understanding
of non-primary areas.



Convolutional Neural Networks

VWaveform representation

Cochleagram representation

Time —

Frequency —

Coarse model of the cochlea




Core Task-Driven Modeling |dea
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layer 3
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Task-Driven Modeling:

|, Optimize for
performance on a
challenging audrtory
task, fixing parameters

2. Compare to neural
data.

Fdarapell ared

Apply to auditory tasks, where the regions themselves are less well known.



Optimize for Performance: The Task

600-way word-recognition task assembled by:

Recordings from standard speech recognition databases (TIMIT, WSJ) with
words spoken at least 20 times

Combined with significant background noise

p auditory scenes “She had your had’
» speech babble dark suit in suit
greasy wash water ‘wash’

» music clips
all year ... " year



Optimize for Performance: The Task

600-way word-recognition task assembled by:

Recordings from standard speech recognition databases (TIMIT, WSJ) with
words spoken at least 20 times

Combined with significant background noise

Qo
@
]

» audrtory scenes S
c K
®© N~

c s 60
O I
h babbl S S

P speecn babble £ § a0
c ©O
S5

. S5 20
» music clips g S
s L

¥ 0

Backgrounds = humans not close to celling.



Performance Results

Performance on 600-way word-recognition task

(b 80_
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Model Layers

... for model, measured on held-out data with novel speakers and
audrtory background noise.



3ehavioral comparison:
CNN & humans on same task

Word recognition in complex backgrounds
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3ehavioral comparison:

N & humans on same task

VWord

recognition In complex backgrounds
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4 different background types at 5 SNR levels;
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Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14)
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Behavioral comparison: CNN & humans on same task
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Behavioral comparison: CNN & humans on same task
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Behavioral comparison: CNN & humans on same task
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Behavioral comparison: CNN & humans on same task

not for human
AR Dehavior match
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Does distortion In a periphery-like representation
explain pattern of performance!

Measure physical distortion of background noise
D

= N =3 e £ 5
> E -
= FE = otaae = 4
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O ————— =
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion
1.0 : by condition
~ | Music
9 ‘ } Less
~ 0.8 /\/ distortion /
S
c 0.6 /
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a 0.2 SpeeCh More
babble distortion
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human

1.0 by condition performance
- +
] } Less ©
,q’:) 0.8 }\/ distortion g
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babble distortion Ij

Background SNR (dB) Background SNR (dB) distortion

LEGEND

@ ®Auditory scenes @®@Speech babble



Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
1.0 by condition performance
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] } Less ©
,“::’ 0.8 ‘ distortion g @ P
S 8 ® o ~
g 0.6 5 ® d
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c 0.4 Q.
3 / Y S ¢ °
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Proportion correct

Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
1.0 Music by condition performance
o Does distortion 1 BN
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Proportion correct

Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
1.0 Music by condition performance
o Does distortion 1 BN
] in a periphery-like representation g e
. C ®
& explain pattern of performance!? - . .
0.2 = ¢ o
Ij o
0796 3 0 3 mr o . Cochleagram
Background SNR (dB) Background SNR (dB) distortion

LEGEND
®\lusic @Auditory scenes ®@Speech babble

Does distortion of CNIN representation explain pattern of performance!?




Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human

1.0 : by condrition performance
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Does distortion of CNN representation explain pattern of performance?

Human prop.
correct

First layer

Distortion in
layer’s response



Distortion and pattern of performance.
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human

1.0 : by condrition performance
- RMusic "
£ 0.8 - - | o
: Does distortion s| e
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Does distortion of CNIN representation explain pattern of performance!?

Human prop.
correct

First layer —————————————————————> Top layer
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
1.0 : by condition performance
e RMUS "
L 0.8 : : o | o
5 Does distortion s| oo«
U - - - - ©
[ Bad N a periphery-like representation = R
£ ' 5 ¢
5 04 explain pattern of performance! - . .
o z.(z) I% 0. O
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Distortion in a highly nonlinear feature space
explains the pattern of performance.

Human prop.
correct
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Imaging Experiment

MRl response data collected™ on 165 commonly heard natural sound stimuli.

Man speaking
Flushing tollet
Pouring liquid
Tooth-brushing
VWoman speaking
Car accelerating
Biting and chewing
Laughing

Typing

Car engine starting
Running water
Breathing

Keys jangling
Dishes clanking
Ringtone
Microwave

Dog barking

Road traffic

Zipper

Cellphone vibrating
Water dripping
Scratching

Car windows
Telephone ringing
Chopping food
Telephone dialing
Girl speaking

Car horn

Writing

Computer startup sound
Background speech
Songbird

Pouring water

Pop song

Water boiling

*Sam Norman-Haignere, Nancy Kanwisher, and Josh McDermott

Guitar

Coughing
Crumpling paper
Siren

Splashing water
Computer speech
Alarm clock
Walking with heels
Vacuum

Wind

Boy speaking
Chair rolling

Rock song

Door knocking



Imaging Experiment

For each voxel, measured average response to each sound:

o = N W

20 60 100 140

o = N W

20 60 100 140

T

20 60 100 140
All 165 Sounds

o = N W

Response
%Smsgloawange



Imaging Experiment

For each voxel, measured average response to each sound:

11065 Voxels

N ehi

Ly ‘L ¥ AN

165 Sounds

Response Magnitude

ata matrix: voxels X sounds.



Imaging Experiment

Neural predictivity: the ability of model to predict each individual
voxel's activity using linear regression.

els

" g AN
B

11065 Vox:

165 Sounds

i

i




Response Reliability at Voxel Level




Model Productivity at Best Layer




Model Productivity at Best Layer
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Median Voxel Predictivity
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Predictivity Difference Between High and Low Model Layers




Predictivity Difference Between High and Low Model Layers




Comparison to Spectrotemporal Filtering Model




Comparison to Spectrotemporal Filtering Model

Significant improvement relative to
existing models,




Differentiation by Region of Interest

variance explained in tonotopic regions

Tonotopic
(c Primary)

08

variance explained
(corrected for reliability)

0.5

conv2
pool2
conv3 |
conv4
convs
pool5



Differentiation by Region of Interest

variance explained in tonotopic regions

Tonotopic
(c Primary)

08

variance explained
(corrected for reliability)

0.5

E 3 2 3 9 2
8 2 § § 8 &
' variance explained in speech regions
Speech-selective ——aiians e i e
' 038 |
(c Non-primary) _
by
ae 07
5
oS
g W
et
§§0.6
&
0.5 . 1
g = 8 S § g




Comparison of Predictivity by Rol

I i i i

Tonotopic Pitch Music Speech

o o o
~ (@)} (0]

variance explained

©
N

©
o

Bl Random Filters (but *not* random architecture)

Spectrotemporal features (Shamma, 2005)

Task-optimized filters




Ongoing: Functionality Organization by Task

}
primary auditory cortex
}
l ——
* Music Genre

|dentification
Word Recognition



Ongoing: Functionality Organization by Task

!
primary auditory cortex
'
l -
- | Finer structure: phoneme,
} Music Genre biphone, triphone hierarchy?

|dentification
Word Recognition /
\




Analysis of Model Architectures

AL

Auditory cortex predictivity
(noise-corrected voxel explained variance

igh-variation task perfor

r= .9410/

Mance Vs.

Higher visual cortex

gy cortéex
s | r=087£0.15 ."
o®
S o '\\ |
C
@
37.5r G 30 4 V2-like
- > ' 1
® * b SIFT Differess:—+n
C_g- 20 4 tddy \et Jdiaatet I’\%LOSOQ
~ X
O ,"'_J V1-like
"~ 10 4
o Pixels
|
19.0 - 0 - . .
. 0.6 0.8
® Categorization Performance (balanced accuracy)
g Yy
| |

16 et al (2014)

Word Recognition Performance

(training percent correct)



Principle of “Goal-Driven Modeling”



Heuristic of “Goal-Driven Modeling”

visual audrtory
COFteX Cortex

“"Mercedes behind
Lamborghini, on a field
in front of mountains.”

"Hannah Is good at
compromising”



Heuristic of “Goal-Driven Modeling”

4
4

V| primary auditory cortex

i !
!

!

"Mercedes behind

Lamborghini, on a field in
front of mountains.”

4

"Hannah Is good at
compromising”



But what type of understanding is this?



But what type of understanding is this?

not saying this type of understanding is impossible ...



1. Formulate
comprehensive
model class (CNNs)

Model Architecture Class

Deeper networks

Yamins & DiCarlo.
Nat. Neuro. (2016)

-

=



mp_' "r"//,;)’-" m

a ﬁ’: o=

Model Architecture Class - T

I

1. Formulate a
comprehensive

model class (CNNs)

Localization

"\

Q

€ S

Categorization

2. Choose challenging,
ethologically-valid tasks

L b —
(categorization) o

( '_, [

= Word recognition

Yamins & DiCarlo.
Nat. Neuro. (2016)



Model Architecture Class

1. Formulate ( MHHHWP ——
Localization

comprehensive '\

model class (CNNs)

2. Choose challenging,
ethologically-valid tasks
(categorization)

/‘

@

3. Implement generic
learning rules (gradient Nat. Newro. (2018
descent)



Model Architecture Class '.Ib({
A

Iu—»lw:{ ~ il
Localization

1. Formulate
comprehensive
model class (CNNs)

2. Choose challenging,
ethologically-valid tasks
(categorization)

3. Implement generic

Yamins & DiCarlo.

learning rules (gradient Nat. Neuro. (2016)

descent)

> Map to brain data. (ventral stream)



Model Architecture Class “bjwft

( o argmin|L(p, )|
ac A

where p* is result of

—A(t) - (Vp, L(2))zeD

A = architecture class L = loss function D = dataset



Model Architecture Class ‘k(k .
= 158 argmin(L (p;)|
-\ acA

where p* is result of

dpq
= —A(t) - (Vp, L(z))zeD
dt
“learning rule”
1 2.
A = architecture class L = loss function D = dataset

l

“tC]S/<”



IT Explained Variance (%)

(&)
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N
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w
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N
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-
o
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o
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Prretple of "Goal-Driven Modeling”

Heuristic of “Goal-Driven Modeling”

| r=087+0.15 HMO

V2-like .
SIET et~ HMAX
|
-
PLOS09
Vi-like
.,/Pixels
O.IG 0{8 1.0

Categorization Performance (balanced accuracy)

7\

res-net!

... after all at some point, for any given task,
you'll probably “go over the hump”
perhaps when you exceed human
performance or overfit on that task



New Lab: Sep 2016

dicarlolab.mit.edu » neuroallab.stanford.edu

MIT / BCS »  Stanford



http://neuroailab.stanford.edu
http://dicarlolab.mit.edu

QI Functional Organization in Higher Visual Cortex

Face patches

Color-biased regions

Regions selective for: Where do these patches come from!?
- faces
. places * In-born built-in structure??
* bodies

- or developmentally determined by domain-

* color specific experience?



Q2: Intermediate Visual Tasks/Properties!

Categorization




Q2: Intermediate Visual Tasks/Properties!

Categorization



Q2: Intermediate Visual Tasks/Properties!

Categorization



Q2: Intermediate Visual Tasks/Properties!

. pixel RGC LGN

Categorization



Q2: Intermediate Visual Tasks/Properties!

pixel

l Categorization

virtual electrophysiology
in models

Shape / curvature!

v
“Second-order”
conjunctions



Q2: Intermediate Visual Tasks/Properties!

pixel

I Categorization

independent goal-driven
constraint?

Shape / curvature!

“Second-order”
conjunctions
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Categorization

independent goal-driven
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“Second-order”
conjunctions
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Q2: Intermediate Visual Tasks/Properties!

I Categorization

independent goal-driven

constraint? Shape / curvature!
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Q2: Intermediate Visual Tasks/Properties!

pixel

independent goal-driven
constraint?

Shape / curvature!

“Second-order”
conjunctions



Q3: Predicting “In-Head" Neural Perturbations

Perturb: g

) T Observe:“Behavior”

@

pixel RGC LGN

(eg. category judgments
via linear SVM)




Q3: Predicting “In-Head” Neural Perturbations

brediction
Perturb: g
I ? a

T Observe:“Behavior”

(eg. category judgments
via linear SVM)

pixel RGC LGN




Q3: Predicting “In-Head” Neural Perturbations

Perturb: ;
3o PO, L 2@* Observe: “Behavior”

drediction

'..:. Al 6 ke (eg. category judgments
e via linear SVM)
00 00
pixel RGC LGN V1 \'p V4 IT

measurement

Vi V4 / \—\ ()7
V2
IT
erturd; Observe:
neural population

actual behavior




Q3: Predicting “In-Head” Neural Perturbations

brediction P ,
erturb: L
g Observe: units in different layer
-
¥ v R4
: 2.—» (1(+) ::.:. 2(:)-0. :
e
pixel RGC LGN V1 \'p V4 IT
measurement \j
V1 V4 / ‘
V2
b
i Hl; i\
Perturb: Observe:

neural population neural population



Q4. Linear Readout as a Model of Neural Decoding

liInear decoder?!

[T features » behavior
Fesses s
..:.:.. - - - - .: W

u. T

RGC LGN V1 V2 V4
» Nonlinear! Temporal instead » How are they learned?! What types of
of rate code! (e.g.) regularizations are implemented?

» View the process realtime! » Default readouts and task switching

(“hyperplane management”)

» XX Put in Rishi learning

<lidec



Q5: Role of Top-Down, Recurrent Connections

H1: Feedback implements learning of filters — form of long-term
memory — not online

label?
¢
¢
V& V22— ‘¢
V4
RGC LGN —= PIT/> CI/T{) A|T/>
) R
33353 p ooyttt (T Q@_. Q@-. Q@_, AR A
00000 0000.4___ | B K 2
| -« \4 \]‘ ...... \4 ...... Gttt




Q5: Role of Top-Down, Recurrent Connections

H2: Feedback solves hard cases that aren't embedded in single
feedforward volley .... like ambiguity. Online inference in the

ventral stream. (Dallenbach’s cow)

Ll <7 !"‘, - ‘nf/”
"g;""-':'. 7, 4 ?
NP

PR

ey multiple inference volleys



Q5: Role of Top-Down, Recurrent Connections

H3a: Downstream, online feedback helps solve dynamic problems
ike (e.g.) task switching.

V1 vz/L

V4 _— PIT

» category
» identity

» pOSItion
» Size

» pOSE
2




Q5: Role of Top-Down, Recurrent Connections

H3a: Downstream, online feedback helps solve dynamic problems
ike (e.g.) task switching.

stored exogenous signal

\4 chosen

—>

CIT AlT
' < behavior

» category
» identity

» pOSItion
» Size

» pOSE
2




Q5: Role of Top-Down, Recurrent Connections

H3a: Downstream, online feedback helps solve dynamic problems

ike (e.g.) task switching.
stored exogenous signal

Vda __ PIT CIT AIT \ chosen
@{ E’@" T —
behavior
» category
y » identity
Hyperp\ane » position
Management” > size

» pOSe
> .




Q5: Role of Top-Down, Recurrent Connections

H3b: Task switching algorithms reach down into ventral stream —
benetit from nonlinear combinations of gating variable and IT
features — e.q., attentional effects

— ) —
£ QO ¥ ) ] category _y
e N
o= o Bo Jo-[J P J=m
size
T pose A

exogenous signal

Distinguished ventrally from H2 (“hard cases”) by the nature of the
task that elicits it — (e.qg.) pre-cuing (volitional control) instead of
(e.g.) passive viewing.



Q5: Role of Top-Down, Recurrent Connections

Something about relationship to generative models



Q6: How Is Visual Learning Implemented?

Many parameters, P

95
How are they learned?
pixel RGC LGN V1 V2 V4 IT
dp OL L = loss function
Gradient descent eq; — = =\(t) - —
- dt ) oP A = learning rate




Q6: How Is Visual Learning Implemented?

e @
Many parameters, P
How are they learned? &

pixel RGC LGN

7 9L L = loss function
Gradient descent eq; d_]; = —A(1) - opP A = learning rate

In current standard practice:

L = soft-max loss computed relative large numbers of
externally-provided semantic labels.



Q6: How Is Visual Learning Implemented?

Many parameters, P

How are they learned?
pixel RGC LGN Vi V2 V4 IT
dp OL L = loss function

Gradient descent eq; T —A(2) - opP A = learning rate

In current standard practice:

| = loss computed via large numbers of externally-

brovided semantic labels.

|deally:

L = un- or semi-supervised function computable from
easlly accessible data about agent's environment



Q6: How Is Visual Learning Implemented?

Many parameters, P

How are they learned?

pixel RGC LGN VA V2 V4 IT
| d OL L = loss function
Gradient descent eq; d_]Z = —\(?) - 5P = learning rate

(1) Which parameters are learned vs developed or evolved!
(2) What are the right loss functions(s)?

(3) How are the loss functions and the GDE implemented/
approximated via neural circurts!



Q7: Other Sensory Domains?

Can goal-drive modeling approaches generalize to other areas!

For example, In auditory cortex:

» can HCNIN models explain higher auditory cortex?
» which tasks best explain functional organization of ACY

» how to auditory-optimized architectures related to visual ones?



Core / Belt / Parabelt Structure

Core area Belt area

*monkey
*

Parabelt area

Tramo et. al, Curr. Opin. Neuro. (1999)



Core / Belt / Parabelt Structure

Spatiotemporal filtering? "N
Core area Belt area

Tramo et al, Curr. Opin. Neuro. (1999) %monkey

Parabelt area *

i

Example: use computational models to help deepen understanding
of non-primary areas.



Core Task-Driven Modeling |dea

i

an W/WW1

. ‘
=
i

Task-Driven Modeling: | /

layer 3

layer 2

|, Optimize for
performance on a
challenging auditory
task (600-way work
recognition In NOIsy
speech)

2. Compare to neural
data.

Parabelt area

Apply to auditory tasks, where the regions themselves are less well known.



Which layer best predicts each voxel's responses!?

CNN suggests

of audrtory cortex.
Layer 6

Layer 5

- Layer 4

- Layer 3
- Layer 2

Lower layer

Primary audrtory cortex: predicted by lower CNN layers.
Non-primary auditory cortex: predicted by higher CNN layers.




Analysis of Model Architectures

AL

Auditory cortex predictivity
(noise-corrected voxel explained variance

igh-variation task perfor

r= .9410/

Mance Vs.

Higher visual cortex

gy cortéex
s | r=087£0.15 ."
o®
S o '\\ |
C
@
37.5r G 30 4 V2-like
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"~ 10 4
o Pixels
|
19.0 - 0 - . .
. 0.6 0.8
® Categorization Performance (balanced accuracy)
g Yy
| |

16 et al (2014)

Word Recognition Performance

(training percent correct)



Q8: Integration of Working Memory

Many visual behaviors beyond vision at a glance (e.g.):
» Scene understanding over multiple saccades

» Strategic decision-making In complex environments

Involve integration of working memory, likely via RNNs.

V1 V2
oo P B > Actio
1 n




Digging deeper into understanding visual cortex

Vatch between models and data at category confusion level Is
dretty good ...

T T .
s Model . ..
0‘ .
Q at ® o
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Human Dprime
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Human Dprime
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Neural Decode Performance




Digging deeper into understanding visual cortex

Vatch between models and data at category confusion level is
dretty good ...

Lo Object grain
o ° b

é‘ 0.8 .. .. E ® ° ._%
= Monkey | GooglLeNet (v3)
'g 0.6 .  HVAX + synthetic trained
O V1
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o 0.4
'3
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0.0

0.0 02 04 06 08 10 1.2 14
Performance (relative to human)

work of:

Rishi Kohitij Kailyn Jim
Rajalingham Kar Schmidt DiCarlo




Digging deeper into understanding visual cortex

Vatch between models and data at category confusion level is
bretty good ... but less good at *image™ grain:

o Object grain o Image grain
@ ¢ Ih.
3 0.8 S E.o © > 0.8 4 Monkey.
I3 Monkey '
k7 :
€ 0.6 i :
§ .VIQHMAX : 06 | . ;.3. ®
% 0.4 - 04 % ..
6 .
2,
802 =
721 eHMAX
0.0 o|/1]

0.0 -
T

0.0 02 04 06 08 10 1.2 14
Performance (relative to human) 00 0.2 04 06 08 10 12 14
Performance (relative to human)

work of:

Rishi Kohitij Kailyn Jim
Rajalingham Kar Schmidt DiCarlo




Digging deeper into understanding visual cortex

Object-level Consistency

(remember, neural fits only ~50%)...

1.0 -

o
0

o
o))

o
~
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o
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O
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Object grain

@ ¢ Ih.
D) e
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Performance (relative to human)

work of:
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Rajalingham

Vatch between models and data at category confusion level is
bretty good ... but less good at *image™ grain:

Image grain
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Model Architecture Class ‘k(k .
= 158 argmin(L (p;)|
-\ acA

where p* is result of

dpq
= —A(t) - (Vp, L(z))zeD
dt
“learning rule”
1 2.
A = architecture class L = loss function D = dataset

l

“tC]S/<”



Model Architecture Class ‘k(k .
= 158 argmin(L (p;)|
-\ acA

where p* is result of

dpq
= —A(t) - (Vp, L(z))zeD
dt
“learning rule”
1 2.
A = architecture class L = loss function D = dataset

l

“tC]S/<”



Digging deeper into understanding visual cortex
Three hypotheses:
) the task (loss function L or dataset D) is wrong

2) the architecture class (A) Is wrong

1 1 .
Ava - AllAaYa - AlAAlIa - 2% - A AVATa
@ \_/ @ y --- W VYV \_/
- O

bet: some version of approximate backprop-like error correction is reasonable



Better tasks (loss functions)

Optimize models of the current structure to directly
match the neural data ...



Better tasks (loss functions)

Optimize models of the current structure to directly
match the neural data ...
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Better tasks (loss functions)

Optimize models of the current structure to directly
match the neural data ...

gle yes

Model class Is Task
wrong IS Wrong

... but not enough neural data’



Better tasks (loss functions)

Optimize models of the current structure to directly match the
behavioral data ... then check against neural data.

gle yes

Model class Is Task
wrong IS Wrong



Better tasks (loss functions)

Optimize models of the current structure to directly match the
behavioral data ... then check against neural data.

gle ves

Model class Is Task
wrong IS Wrong

Rishi Kohitij Kailyn Jim
Rajalingham Kar Schmidt DiCarlo

Eli
Wang




Better tasks (loss functions)

Optimize models of the current structure to directly match the
behavioral data ... then check against neural data.

(1) predict vector of errors

__» Imagenet

softmax

[/

[ /]//.

i
x

)

regression

error pattern

Rishi Kohitij Kailyn Jim
Rajalingham Kar Schmidt DiCarlo

Eli
Wang




Better tasks (loss functions)

Optimize models of the current structure to directly match the
behavioral data ... then check against neural data.

(1) as actual error pattern

softmax

[/

[ /]//.

i
x

)

> Imagenet

error pattern

Rishi Kohitij Kailyn Jim
Rajalingham Kar Schmidt DiCarlo

Eli
Wang




Better tasks (loss functions)

Optimize models of the current structure to directly match the
behavioral data ... then check against neural data.

(1) as multiplier — indicator of niche!

softmax

[/

[ /]//.

i
x

)

> Imagenet

error-inverse weighting

Rishi Kohitij Kailyn Jim
Rajalingham Kar Schmidt DiCarlo

Eli
Wang




Better tasks (loss functions)

less normative “task’” more normative ‘task’
< >

Fit neural data
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Better tasks (loss functions)

less normative “task’”
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more normative ‘task’

Fit neural data

It categorization
error pattern

check against neural
data

>

Solve non-
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neural data



Better tasks (loss functions)

less normative “task” more normative “task”
< >
. . o Solve non-
Fit neural data It categorization L
categorization

error pattern
tasks
check against neural

ata check against

neural data

But which non-categorical tasks!



Better tasks (loss functions)

Pose / position Normal/Depth
estimation estimation

Segmentation

Chengxu Zhuang



Better tasks (loss functions)

Future prediction under agent-controlled actions

working memory network

l

Fei-Fei L »)

Nick
Haber




Better tasks (loss functions)

Where should the tasks be imposed?! (intermediate!)

pose =

(0, 45, 0) approximate

Surface
normal map

&L

category = “bald eagle”

} : : :
H ‘ e u i, .
) | |

shallow category-dedicated network

:

Strategy: optimize over architectures for solving
joint tasks, compare to neural data

How much work can less heavily supervised tasks do?



Comparing to Neural Data

Cateorizaiton Performance

* Various second-order metrics: encoding regression, RSAs, etc

* Behavioral consistency — pattern of errors at various grains of detall

* But really, there is a developmental hypothesis implicit in these models. Time
course of all metrics should be matched:

Training Timecourse (thousands of iterations)

Use developmental data
separate more biologically
correct loss functions from
less correct ones?






Better architectures

explained variance
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AlexNet pool5 (1000 components) neural fits

150 200
time (ms) from stimulus onset
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Better architectures

fc

fc

fc

time
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Better architectures

T d;ation ‘ ‘ ‘
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conv — 4
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time
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Better architectures
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concat
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Better architectures

conv
bypass conv
concat
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Better architectures

bypass
concat

time

Aran Surya Jonas Maryann Kohitij Jim
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Better architectures

fc
fc

fc

duration

conv — 4

bypass conv
concat T
conv — -
T time
conv

N
2

o
PO
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Better architectures

conv D duration

T time

memory
state, .= conv, , + A - conv
+1 t+1 t
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Better architectures
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Better architectures

fc

fc

duration
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T | time
memory
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impulse transfer
function
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Better architectures

fc

fc

duration

GHRWN =

bypass
concat

OOU U

T | time
memory

/\ statem =conv, , + A conv,
— >

. N el
impulse transfer
function
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Better architectures

~ What task(s)?

T a) vanilla categorization

conv :> duration
— ]

bypass conv :)
concat

time
conv memory
/\ state, .= conv,,, + A - conv
+1 t
i | >
impulse transfer
function

Surya Jonas Maryann Kohitij Jim
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Better architectures

~ What task(s)?

C

T a) vanilla categorization

—h

= ) anon b) time-discounting
s <) L= b
t

time be accurate but also fast

conv memory

/\ state, .= conv,,, + A conv,

impulse transfer
function

re
PO

Aran Surya Jonas Maryann Kohitij Jim
Nayebi Ganguli Kubilius Rui Kar DiCarlo



Better architectures

5 What task(s)?
T a) vanilla categorization
s > =7 b) time-discounting

T L = t.L
conoat cov ) E 8 t
t

|
! - ime be accurate but also fast
conv Dmemory
ate, .= conv, .+ A - conv .
/\ _ P SO Ao C) heavy occlusion &c
impulse ;'m,nsfer
function ' image ‘

Surya Jonas Maryann Kohitij Jim
Ganguli Kubilius Rui Kar DiCarlo




Better architectures

; What task(s)?

T a) vanilla categorization
conv ) ot b) time-discountin

f : °

T ], — t.r
bypass [ eany ) > 7L
2

|
COTW > e be accurate but also fast
conv Dmemory
ate, .= conv, .+ A - conv .
/\ _ P SO Ao C) heavy occlusion &c
impulse ;'m,nsfer
function | image

strategy: optimize for tasks check against static & dynamic data

Surya Jonas Maryann Kohitij Jim
Ganguli Kubilius Rui Kar DiCarlo



Rodent Somatosensory Cortex

Petersen, 200/

A From Whisker to Cortex B Whiskers and Barrels
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C  Thalamocortical connectivity D  Corticocortical connectivity
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Zhuang & Lab



Rodent Somatosensory Cortex

Petersen, 200/

A  From Whisker to Cortex B  Whiskers and Barrels * Spatially-structured input data
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Rodent Somatosensory Cortex

Petersen, 200/

A  From Whisker to Cortex B  Whiskers and Barrels * Spatially-structured input data
-
4
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eoo0 83”*8'_ - % Spatiotopic sensor
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C  Thalamocortical connectivity D  Corticocortical connectivity
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Rodent Somatosensory Cortex

Petersen, 200/

A  From Whisker to Cortex B  Whiskers and Barrels * Spatially-structured input data
-
4
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o000 Cemien o % Spatiotopic sensor
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Jmele) % Potentially hierarchical structure
C  Thalamocortical connectivity D  Corticocortical connectivity

L1 =

L2/3

N O P

LSA
L5B

L6

\ ¥
Chengxu  Mitra Hartmann
Zhuang & Lab



Rodent Somatosensory Cortex

Petersen, 200/

A  From Whisker to Cortex B  Whiskers and Barrels * Spatially-structured input data
-
¥4
o000 E3A2(AD, , ,
uoo: eyed) (e % Spatiotopic sensor
Q
.

quz 01 = . . .
Jmele) % Potentially hierarchical structure

* Poorly understood higher
C  Thalamocortical connectivity D  Corticocortical connectivity cortical areas
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Rodent Somatosensory Cortex

Petersen, 200/

A  From Whisker to Cortex B  Whiskers and Barrels * Spatially-structured input data
-~

"4
X ’ eee0 ~rah2) (A

e | 2 evoe ey e * Spatiotopic sensor
U S /}/ff ' w o o
x Em.ea ~ % Potentially hierarchical structure

* Poorly understood higher
C  Thalamocortical connectivity D  Corticocortical connectivity cortical areas

L1 ——

L2/3

N O @

LSA
LSB

L6

Hypothesis: can get a model for this cortical cascade by
optimizing properly-sized CNN with whisker-like sensor input
for some ethologically relevant somatosensory task.

Chengxu  Mitra Hartmann
Zhuang & Lab



First have to build a model of the sensory to gather data.

Using published data from Mitra Hartmann's group

Chengxu  Mitra Hartmann
Zhuang & Lab



First have to build a model of the sensory to gather data.

Follicle —

Using published data from Mitra Hartmann's group

Chengxu  Mitra Hartmann
Zhuang & Lab



First have to build a model of the sensory to gather data.

Chengxu  Mitra Hartmann
Zhuang & Lab



Rodent Somatosensory Cortex

Validate sensor on one-object tasks ... (teddy vs. duck)

0.94
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0.90

0.88

0.86

Testing perf

0.82 |
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0
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Testing perf
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Testing perf vs. training num

1000 2000 _ 3000 _ 4000 _ 5000 _ 6000 7000
Training num

Testing perf vs. Feature num

Feature num

Chengxu  Mitra Hartmann
Zhuang & Lab
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Testing perf vs. Variation
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Testing perf

0.86

0.84 ' ‘
10 15 2.0 25 3.0

Variation between train/test

train/test splits with different:
* attack vectors
* attack speed
* object rotations

* object size



Rodent Somatosensory Cortex

Validate sensor on one-object tasks ... (teddy vs. duck)

Testing perf vs. Variation

Testing perf vs. training num

0.94
0.92
092}
0.90
0.90
. t
0.88 @
-4 Q
2 0.86 =
£ 5 088
v
i Q
& 084 R
082/ 1 0.86
0.80 |
0.78 A x ‘ 0.84 : :
0 1000 2000 3000 4000 5000 6000 7000 10 15 2.0 25 3.0
Training num Variation between train/test
005 Testing perf vs. Feature num
0.94 |

train/test splits with different:

093¢+
092
* attack vectors

091

090t

Testing perf

* attack speed

0.89

0.88

* object rotations

0.87
0

5 10 15 20 25 30
Feature num

* object size

Train on shape recognition and/or normal estimation task,
compare to neural data

Chengxu  Mitra Hartmann
Zhuang & Lab



Rodent Somatosensory Cortex

lf successful:

Model Architecture Class

gcalization

somatosensation

vision

audition




Model Architecture Class -

> Formulate MW;
" Localization
comprehensive \

model class (CNNs) /.

> Choose challenging, */p/

ethologically-valid tasks
(categorization)

> |mplement generic
learning rules (gradient
descent)

> Map to brain data. (ventral stream)



s Formulate Model Architecture Class I'bmumi

comprehensive gcalization o
model class (CNNs +
RNs)

> Choose challenging,
ethologically-valid tasks

(task switching/
memory)

> |mplement generic

learning and expansion
rules

> Map to brain data.
(PFC, Hippocampus, &c)

Kevin
Feigelis Schnitzer DiCarlo






Key Results

Task-driven modeling can make greatly improved quantitative models
of high-level cortical areas.

These models can lead to new qgualitative insight about how the
brain solves sensory tasks.

These concepts are useful across multiple sensory modalities.



I'T Neurons Track Human Performance

Human Performance

I'T Population
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Neural Decode Performance

® | ow-Variation Face subordinate tasks.

Human Dprime

[T matches human error patterns as well as raw performance.
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Neural Response Prediction

Some kind of mapping Is necessary.

Source Brain Target Brain
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IT IT

Neuron 1
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Neural Response Prediction

Here, we use linear regression.

Source Brain

NN

V2
IT

Neuron 1

—_—
IHe
(@)

Img 1
Img 2

M*S

LT THE

Vi

Target Brain

Img 1
Img 2

V4
V2
IT
Neuron 1 2 150
El B
[ ]
Il B




Neural predictivity: the ability of model to predict each individual
neural site’s activity.

Neural site unit ~ sparse

Inear combination of model
units

/W//

I
(/ n ///‘

Linear regression with fixed
training images.

Accuracy = goodness-of-it sl
on held-out testing Images
(Cross validated)

Neural predictivity = median
accuracy over all units.

Neural Recordings from IT and V4



Neural predictivity: the ability of model to predict each individual
neural site’s activity.
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Neural Recordings from IT and V4



Performance Comparison

Low Var,

Yamins™ and Hong* et. al. PNAS (2014)
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Neural Data Recording
img 1 blank img 2 blank
Output = Binned spike
100ms 100ms 100ms 100ms

counts in /Oms-1/0ms
post stimulus
presentation; averaged
over 25-50 reps of each
image.

site
296

-50 0 50 100 150 200 250

Wi

-50 0 50 100 150 200 250

img 5760

100ms

b

-50 0 50 100 150 200 250




Single Site Responses

Best single position-encoding sites.

Site 10 Site 54 Site 43
heat map value at x,y =

-
g -
response averaged over all

Site 77 Site 102 Images where object center is In
position X,y




Single Site Responses

Site 10

Best single position-encoding sites.

heat map value at x,y =
response averaged over all
images where object center is In
position X,y

Site 11

Similar to Mackvoy (201 3) and DiCarlo(2003)
except — dramatically more variation.



Single Site Responses

Site 10 Site 54 Site 43

Best single position-encoding sites.
|
y e

h | heat map value at x,y =

response averaged over all

Site 11 Site 77 Site 102 Images where object center Is In
N * position X,y
i =
L |
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Best Site Performance
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T cortex V4 cortex
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Monkey Neurons vs Humans

IT V4 V1 Pix
Basic Categorization 773 + 185 2 2 x 106 _ _
Subordinate ldentification 496 + 93 4.4 % 10° _ _
X-axis Position 1414 + 403 52x10°  3.0x10’ -
Y-axis Position 918 + 309 2.5 %104 8.7 x10° —
Bounding Box Size 322 + 90 1.7 x10* — —
X-axis Size 256 * 87 9.8 x10° 3.4 x10’ —
Y-axis Size 237 + 87 3.8x10° 95x10° —
3-D Object Scale 401 + 90 3.2 x 104 — _
Major Axis Length 201 + 70 1.1 x 104 — _
Aspect Ratio 163 + 61 951 + 59 6.5x10°  —
Major Axis Angle 804 + 136 3.2 x10° — —
Z-axis Rotation 1932 + 1061 — _ _
Y-axis Rotation 369 + 115 2.8x10° — _
X-axis Rotation 1570 + 530 — — —

— = more than 10 billion sites required

Mean over tasks, human-parity for IT is at ~700 multi-unit trial-averaged sites.

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (in press)



Monkey Neurons vs Humans

IT V4 V1 Pix
Basic Categorization 773 + 185 2 2 x 106 — _
Subordinate ldentification 496 + 93 4.4 % 10° _ _
X-axis Position 1414 + 403 5.2 x10° 3.0 x 10 —
Y-axis Position 918 + 309 2.5 %104 8.7 x10° —
Bounding Box Size 322 + 90 1.7 x10* — —
X-axis Size 256 * 87 9.8 x10° 3.4 x10’ —
Y-axis Size 237 + 87 3.8x10° 95x10° —
3-D Object Scale 401 + 90 3.2 x 104 — _
Major Axis Length 201 + 70 1.1 x 104 — _
Aspect Ratio 163 + 61 951 + 59 6.5x10°  —
Major Axis Angle 804 + 136 3.2 x10° — —
Z-axis Rotation 1932 + 1061 — _ _
Y-axis Rotation 369 + 115 2.8x10° — _
X-axis Rotation 1570 + 530 — — —

— = more than 10 billion sites required

Mean over tasks, human-parity for IT is at ~350000 single-unit single-trial neurons.

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (in press)



Example: Human object categorization accuracy as a
function of image viewing time

“Core object perception”
regime
100

95 A

T | 90 -
v }
P R I
i
‘ ¢

80 - +
70 -7 T T T T T // /;H
h : o 0 50 100 150 200 250 500 2000
Chance is 50% Stimulus Duration (milliseconds)

T T

All the data | will Typical primate fixation
show you today duration during natural
viewing

Accuracy (% correct)




Somewhat newish ideas about [T

State of knowledge
from previous studies . . .

Categorization
1
(known)
V1 V2 V4 IT

Orthogonal Properties

?? ?? ?? ??

0 j(known)

V1 V2 V4 IT

Depth Along Ventral Stream
(increasing receptive field size —)

Population Decode Performance
(relative to human performance)
o




Somewhat newish ideas about [T

Population Decode Performance

(relative to human performance)

State of knowledge Multiple hypotheses consistent with
from previous studies . . . the existingdata...
Categorization H1

(\«\O\Nm

V1 V2 V4 IT

\/1 \/2 V4 IT

Orthogonal Properties

?? ?? ?? ??

5(known)

V1 V2 V4 IT

Depth Along Ventral Stream
(increasing receptive field size —)

Hl: Tolerance /
sensitivity
tradeoff?



Somewhat newish ideas about [T

Population Decode Performance
(relative to human performance)

State of knowledge
from previous studies . . .

Categorization
1
(KnO\Nn)
V1 V2 V4 IT 0

Multiple hypotheses consistent with

the existing data . . .
H1

H2

Orthogonal Properties

V1 V2 V4 I'T

?? ?? ?? ??
5(known) 0
V1 V2 V4 IT
Depth Along

V1 V2 V4 IT

Ventral Stream

(increasing receptive field size —)

V1 V2 V4 I'T

H3: Information
preservation?



Somewhat newish ideas about [T

Population Decode Performance

(relative to human performance)

State of knowledge
from previous studies . . .

Categorization

(\«\O\Nm

V1

27

V2

??

V4 IT

Orthogonal Properties

?? ??

j(known)

V1

V2

V4 IT

Multiple hypotheses consistent with

the existing data . . .
H1

H2

0

V1 V2 V4 I'T

H4

V1 V2 V4 IT

Depth Along Ventral Stream

(increasing receptive field size —)

V1 V2 V4 IT



Somewhat newish ideas about [T

Population Decode Performance
(relative to human performance)

State of knowledge
from previous studies . . .

Categorization
1
(KnO\Nn)
V1 V2 V4 IT 0

Multiple hypotheses consistent with

the existing data . . .
H1

H2

Orthogonal Properties

V1 V2 V4 I'T

H4

?? ?? ?? ??
5(known) 0
V1 V2 V4 IT
Depth Along

(increasing receptive field size —)

V1 V2 V4 IT

Ventral Stream

VA1 V2 V4 I'T

H4: Simultaneous build-up of encoding



Face Perception Is Fast, Robust, and Accurate
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Face Perception Is Fast, Robust, and Accurate




Selective Patches in Higher Visual Cortex

Face patches

Regions selective for:
- faces



Selective Patches in Higher Visual Cortex

Face patches

Color-biased regions

Regions selective for:
- faces

» places
- bodies

« color



Selective Patches in Higher Visual Cortex

Face patches

Color-biased regions

Regions selective for: Where do these patches come from!?
- faces
. places * In-born built-in structure??
* bodies

- or developmentally determined by domain-

* color specific experience?



Selective Patches in Higher Visual Cortex

controlled rearing
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Selective Patches in Higher Visual Cortex

controlled rearing

Face patches
Color-biased regions
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. In a computational model



Model Training Regimen

ImageNet (2012). Thousands of images in thousands of categories.

Treemap Visualization Images of the Synset Downloads
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Model Training Regimen

controlled rearing

Treemap Visualization Images of the Synset Downloads
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question: how does removing this content affect the model!
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Testing the base-line non-face model.
face-selective units identified

3 ...
with a standard localizer ...

___Boatsﬂ @
Hierarchical Convolutional
Neural Network ...
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@ ... trained on images with
no faces or animate objects ...




Testing the base-line non-face model.

Original speculation: we won't find any (or statistically significantly
many) face selective units because:

Hypotheses for existing of face-selective units:
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Testing the base-line non-face model.

face selective = d’'vs non-face > | 0.07

Fraction Selective Units
(d'vsall >1)

0.01

Faces

Kanwisher, |99/




Testing the base-line non-face model.

FHK

face selective = d'vs non-face > | 0.07]

Fraction Selective Units
(d'vsall >1)

0.01+

Faces

~7% of units in model
were face selective




Testing the base-line non-face model.

face selective = d’vs non-face > |

Fraction Selective Units

(d'vsall >1)

0.07}|

0.01+

FHK
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Faces Cars Planes Tables

lower (or n.s.)
numbers for several
other tested categories




Testing the base-line non-face model.

FHK

face selective = d’'vs non-face > | 0.07

Fraction Selective Units
(d'vsall >1)

0.01} NS ns

Faces Cars Planes Tables

0.07

Fraction Selective Units
dvsall >1)

0.00F

Training Timecourse



Validating the face-selective units

Boats Q ... face-selective units identified

with a standard localizer ...

@ Hierarchical Convolutional
Neural Network ...
|

@ ... validated on a distinct set of
testing images.

Planes

Tables

layer 1

@ ... trained on images with
no faces or animate objects ...




Validating the face-selective units

average ranked response over all face-selective units
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Validating the face-selective units
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Validating the face-selective units




Possible explanation

How could this result be true?



Possible explanation

2-d MDS of three-d mesh distances for |28 objects in |6 categories.
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Possible explanation

2-d MDS of three-3 mesh distances for |28 objects in |6 categories
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|) Faces are more clustered in shape space than most other categories

2) but they're not totally i1solated in shape space.



Possible explanation

2-d MDS of three-3 mesh distances for |28 objects in |6 categories
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Possible explanation

2-d MDS of three-3 mesh distances for |28 objects in |6 categories
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Multi-array Electrophysiology Experiment

detalled comparison to face neurons



Predictions of Face-Selective Neural Responses

[T Unit 53

Response
Magnitude

Animals Boats Cars Chairs Faces Fruits Planes Tables

Images sorted by category

Neural data



Predictions of Face-Selective Neural Responses

[T Unit 53

Response
Magnitude

Animals Boats Cars Chairs Faces Fruits Planes Tables

Images sorted by category

Neural data . . |
Regularized linear regression to map

model units to neural units,

predictions on held-out testing images.



Predictions of Face-Selective Neural Responses

[T Unit 53

Response
Magnitude
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Images sorted by category

Neural data

Model prediction



Predictions of Face-Selective Neural Responses

[T Unit 53

Response
Magnitude

Animals Boats Cars Chairs Faces Fruits Planes Tables

Images sorted by category

Neural data Explained Variance Across All Face Selective Units:

Model prediction With Faces in Training. 51.5 + 3.9 %

Without Faces in Training: 50.8 + 4.4 %




Conclusions

Models “raised’” without faces can still have face-selective units.

Consistent with Sugita (2008)

Some aspects of specialized face machinery may be explicable
from the “null model” of general object recognition.

A third hypothesis for the development of face (and other)
selective regions:

* In-born built-in structure or  Developmentally
determined by general
* Developmentally determined by experience?

particular experience.



Future questions / limrtations

Better exploration of category selective across many categories as
a function of contents of training data.

More detalled comparison to neurophysiology of face patch
SYStEM. Freiwald & Tsao, 2011, Issa & DiCarlo 2014

Explicrtly address question of spatial layout.

Results here do NOT imply monkeys without face
experience will necessarily have a *patch*™.




Thanks to great colleagues!

Ha Hong

Nancy Kanwisher Jim DiCarlo



