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Understanding complex, noisy data streams is a critical part of cognition. 

The origin of the problem
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“Mercedes behind Lamborghini, on a field in front of mountains.”



Variation Makes Object Recognition Challenging
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Understanding complex, noisy data streams is critical part of cognition. 

The origin of the problem

variation sources:  speaker identity
background noise
reverberation 
 . . . 

time
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de

“Hannah is good at compromising.”



Axes of natural variation of natural 
“physics” representation of world

e.g. 

retinal photoreceptor voltage  
or hair-cell point amplitudes

The origin of the problem



The origin of the problem

Axes of natural variation for 
natural behavioral events

e.g.

deforming face moving in complex-
lighted environment



are misaligned with

Axes of natural variation of natural 
“physics” representation of world

e.g. retinal photoreceptor voltage  
or hair-cell point amplitudes

The origin of the problem

Axes of natural variation for 
natural behavioral events

(e.g. deforming face moving in 
complex-lighted environment)
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The origin of the problem

“Mercedes behind 
Lamborghini, on a field 
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Sensory cascade

“Mercedes behind Lamborghini, on 
a field in front of mountains.” “Hannah is good at compromising”

visual
cortex

auditory
cortex



Ventral visual stream

Ventral Stream = Connected series of brain areas
Kaas (2003), Van Essen (2003), Valois and Morgan (1974) Gross (1973), Mishkin and Ungerleider (1983), Holmes and Gross (1984) Horel et al.,(1987); Freiwald 
and Tsao (2010), Pitcher, et al. (2009) Yaginuma (1982), Holmes (1984), Weiskrantz (1984), Schiller (1995)  Afraz (2006), Verhoef (2012)  Rust (2010), Freiwald 
(2010), Lehky (2007) Majaj (2015)
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V4

= Array

10mm

Multi-array electrophysiology in macaque V4 and IT. 

About 300 total sites

Multi-array Electrophysiology Experiment

Ha Hong Jim DiCarlo



Multi-array Electrophysiology Experiment

5760 images

64 objects 

8 categories

uncorrelated photo backgrounds

Animals Boats Cars Chairs Faces Fruits Planes Tables

Pose, position, scale, and background variation

640 images
Low variation

2560 images

Medium variation

High variation

2560 images



IT

V4

= Array

10mm

Img 1       Img 2              Img 5760

...

Neuron 1
Neuron 2
Neuron 3

Neuron 296

...

Output =  Binned spike counts 70ms-170ms post stimulus presentation
               averaged over 25-50 reps of each image. 

Multi-array Electrophysiology Experiment

About 300 total sites



Neural-Behavior Decoding

linear combination of units

Animal or not? 

different linear combination

Car or not? 

.

.

.
Chair or not? 

Face or not? 

Img 1       Img 2              Img 5760

...

Neuron 1
Neuron 2
Neuron 3

Neuron 296

...



Decoding Behaviorally Output from Neural Populations

V4 loses out at higher variation:
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Decoding Behaviorally Output from Neural Populations

… but humans are much less affected. 

V4 loses out at higher variation:



IT Neurons Track Human Performance
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… but humans are much less affected. 

V4 loses out at higher variation:

… as is the IT neural population. 



IT Neurons Track Human Performance

At high variation levels,  IT much better than  V4 and existing models.
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… but humans are much less affected. 

V4 loses out at higher variation:

… as is the IT neural population. 



IT Neurons Track Human Performance

IT matches human error patterns as well as raw performance.

Low-Variation Face subordinate tasks. 

IT Population V4 Population
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Comparison of Object Recognition Behavior in Human and Monkey 
R. Rajalingham, K Schmidt, J.J. DiCarlo, Vision Sciences Society (2014) 
R. Rajalingham, K Schmidt, J.J. DiCarlo, J. Neuroscience (2015)

Human Rhesus monkey

“camel” 
confused with 
“dog”

“tank” confused with “truck”

Upshot:  human and non-human primate basic level core object perception 
(sp. identification) are indistinguishable

Does not depend on reporting effector (touch vs. eye movement)

Human / Monkey similarities



Ventral Stream as Stacked Cortex

GOAL:  Predictive model of single-neuron 
responses throughout the ventral stream to 

arbitrary image stimuli. 
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Ventral Stream as Stacked Cortex

GOAL:  Predictive model of single-neuron 
responses throughout the ventral stream to 

arbitrary image stimuli. 

1. image-computable 2. Predictive 3. Mappable

→  Convolutional Neural Networks (CNNs)
Fukushima, 1980; Lecun, 1995



Goal:  Predictive Model of Ventral Stream

Kunihiko Fukushima!

Tokyo, November 2015



Goal:  Predictive Model of Ventral Stream

Kunihiko Fukushima!

Tokyo, November 2015

Developed neocognitron
while Japan Broadcasting 

Corporation (NHK)
… office directly next 

door to Keisuke Toyama and 
Keiji Tanaka



‣ Individual layers of neurally-plausible basic operations
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Layer components are basic neural-like operations.

Hierarchical Convolutional Neural Networks



Hierarchical Convolutional Neural Networks

synaptic
weights
patterns

single-unit 
activations complex cells competitive

inhibition

untangling
through 

dimension
expansion

“AND” operation
by limiting dynamic

range

adding robustness
by dimension 

reduction
put results back into 

standard range

neuro:

data:

‣ Individual layers of neurally-plausible basic operations

...

Φ1

Φ2

Φ k

⊗
⊗

⊗

NormalizePool
Filter Threshold &

Saturate

Layer components are basic neural-like operations.

Hubel and Wiesel (1965-1975) Lecun (2004), Carandini et. al (2005),
Lennie & Movshon (2005) , DiCarlo (2012)
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‣ Applied convolutionally — same at all locations:  approx. retinopy

‣ Individual layers of neurally-plausible basic operations

Hierarchical Convolutional Neural Networks
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Operations in Linear-Nonlinear Layer

LN

...

LN

LN

‣ Applied convolutionally — same at all locations:  approx. retinopy

‣ Individual layers of neurally-plausible basic operations

image-like output

image-input

Hierarchical Convolutional Neural Networks
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Filter
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Operations in Linear-Nonlinear Layer

LN

...

LN

LN

‣ Applied convolutionally — same at all locations:  approx. retinopy

‣ Individual layers of neurally-plausible basic operations

one slice of output
for each filter pattern

image-input

Hierarchical Convolutional Neural Networks



Lower areas, (RGC, LGN, V1) have been reasonably captured by single-
layer convolutional model:  ~50% of variance explained.  Carandini et. al (2005), Lennie & 

Movshon (2005)
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Hierarchical Convolutional Neural Networks
Where did this come from? 

(1) “Hubel and Wiesel’s Intuition”
      ~1970s and formalized later 

→ e.g. there is a “fixed basis set” 
that just “makes sense” if we’re 
smart enough

(2) Sparse Coding Foldiak, Olshausen,    
      mid 1990s

→neurons have to represent their 
environment, as efficiently as possible



Push up the ventral stream? 

Lower areas, (RGC, LGN, V1) have been reasonably captured by single-
layer models:  ~50% of variance explained.  Carandini et. al (2005), Lennie & Movshon (2005)

Hierarchical Convolutional Neural Networks

layer 2

layer 3

layer 4

layer 1
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HCNNs



...

Φ1

Φ2

Φk

⊗
⊗

⊗
Filter

Threshold Pool Normalize

Operations in Linear-Nonlinear Layer

...

Φ1

Φ2

Φk

⊗
⊗

⊗
Filter

Threshold Pool Normalize

Operations in Linear-Nonlinear Layer
...

Φ1

Φ2

Φk

⊗
⊗

⊗
Filter

Threshold Pool Normalize

Operations in Linear-Nonlinear Layer ...

Φ1

Φ2

Φk

⊗
⊗

⊗
Filter

Threshold Pool Normalize

Operations in Linear-Nonlinear Layer

layer N?

LN

LN

...

LN

LN

...

LN

LN

LN

...

LN

...

LN

LN

Neural Fitting Strategy?

Huge number of parameters consistent with HCNN concept. 
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Huge number of parameters consistent with HCNN concept. 

i. architectural params:  (# layers, # filters, receptive field sizes, &c) — “network structure”
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ii. filter parameters:  continuous valued pattern templates — “network contents”
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Neural Fitting Strategy?

Huge number of parameters consistent with HCNN concept. 

Q: How to discover the “right” parameters to understand real cortex? 

i. architectural params:  (# layers, # filters, receptive field sizes, &c) — “network structure”

ii. filter parameters:  continuous valued pattern templates — “network contents”
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Where did this come from? 

(1) “Hubel and Wiesel’s Intuition”
      ~1970s and formalized later 

→ e.g. there is a “fixed basis set” 
that just “makes sense” if we’re 
smart enough

(2) Sparse Coding Foldiak, Olshausen,    
      mid 1990s

→neurons have to represent their 
environment, as efficiently as possible

Recall: 
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Hierarchical Convolutional Neural Networks
Where did this come from? 

(1) “Hubel and Wiesel’s Intuition”
      ~1970s and formalized later 

→ e.g. there is a “fixed basis set” 
that just “makes sense” if we’re 
smart enough

(2) Sparse Coding Foldiak, Olshausen,    
      mid 1990s

→neurons have to represent their 
environment, as efficiently as possible

REALLY HARD TO GENERALIZE 
TO MULTI-LAYER NETWORKS

Recall: 
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IT

V4

= Array

10mm

...

Φ1

Φ2

Φk

⊗
⊗

⊗
Filter

Threshold Pool Normalize

Operations in Linear-Nonlinear Layer ...

Φ1

Φ2

Φk

⊗
⊗

⊗
Filter

Threshold Pool Normalize

Operations in Linear-Nonlinear Layer
...

Φ1

Φ2

Φk

⊗
⊗

⊗
Filter

Threshold Pool Normalize

Operations in Linear-Nonlinear Layer ...

Φ1

Φ2

Φk

⊗
⊗

⊗
Filter

Threshold Pool Normalize

Operations in Linear-Nonlinear Layer

layer N?

LN

LN

...

LN

LN

...

LN

LN

LN

...

LN

...

LN

LN

Neural Fitting Strategy?

…not enough neural data to  
constrain model class. Gallant (2007); Rust & 
Movshon (2006)

Huge number of parameters consistent with HCNN concept. 
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Neural Fitting Strategy?

…not enough neural data to  
constrain model class. Gallant (2007); Rust & 
Movshon (2006)

Overfitting. 

Huge number of parameters consistent with HCNN concept. 



Optimize for Performance, Test Against Neurons
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Step 1:  Optimize for Task
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Step 1:  Optimize for Task
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Visual
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over Image Input

LN

Step 2:  Compare to Neural Data
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Optimize for Performance, Test Against Neurons



1. Performance:  accuracy on a challenging, high-variation visual 
object categorization task. 

2. Neural predictivity: the ability of model to predict each 
individual neural site’s activity.    

Optimize for Performance, Test Against Neurons



1. Performance:  accuracy on a challenging, high-variation* visual 
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*challenging for neural network engineers, not the 
animal



1. Performance:  accuracy on a challenging, high-variation* visual 
object categorization task. 

2. Neural predictivity: the ability of model to predict each 
individual neural site’s activity.    

Optimize for Performance, Test Against Neurons

Our hypothesis:  Performance (1)  →  neural predictivity (2).   

*challenging for neural network engineers, not the 
animal



Initial Validation of Idea

High-throughput experiments to directly test the relationship 
between performance and IT neural predictivity. 

‣ Random selection of model parameters;  measure performance and 
neural predictivity  Pinto et. al (2008, 2009)



different model
(architectural params)

random
r = 0.55 ± .08

(n=2000)

Initial Validation of Idea
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Yamins* and Hong* et. al. PNAS (2014)



Initial Validation of Idea

High-throughput experiments to directly test the relationship 
between neural predictivity and performance.

‣ Random selection of model parameters;  measure performance and 
neural predictivity  Pinto et. al (2008, 2009)

‣ Optimize parameters for performance; measure neural predictivity. optimization 

techniques:  Bergstra Yamins & Cox (2013)



performance-
optimized

r = 0.79 ± .05
(n=2000)

Initial Validation of Idea

Yamins* and Hong* et. al. PNAS (2014)



Initial Validation of Idea

‣ Random selection of model parameters;  measure performance and 
neural predictivity  Pinto et. al (2008, 2009)

‣ Optimize parameters for performance; measure neural predictivity optimization 

techniques:  Bergstra Yamins & Cox (2013)

‣ Optimize parameters for neural predictivity; measure performance

High-throughput experiments to directly test the relationship 
between neural predictivity and performance.



Performance vs IT predictivity: Predictivity-Optimized

predictivity-
optimized

r = 0.80 ± .04
(n=2000)

Yamins* and Hong* et. al. PNAS (2014)



Performance vs IT predictivity: Predictivity-Optimized

r = 0.55 ± .08
r = 0.79 ± .05
r = 0.80 ± .04

Performance is a potentially very good driver of neural prediction. 

Yamins* and Hong* et. al. PNAS (2014)



Performance vs IT predictivity 

Yamins* and Hong* et. al. PNAS (2014)



Performance vs IT predictivity 

But, not doing that well.   Really want to be here:



Optimization Strategy

→ Ensembles of models chosen through modified boosting  Yamins et. al (2013, 2014)

i. architectural params:  (# layers, # filters, receptive field sizes, &c) — “network 
structure”

→ Automated meta-parameter optimization in high-dimensional discrete parameter spaces 
Bergstra Yamins & Cox (2013)



Optimization Strategy

→ Ensembles of models chosen through modified boosting  Yamins et. al (2013, 2014)

→GPU-accelerated stochastic gradient descent  Pinto et. al., (2009), Krizhevsky et. al. (2012)

i. architectural params:  (# layers, # filters, receptive field sizes, &c) — “network 
structure”

ii. filter parameters:  continuous valued pattern templates — “network contents”

→ Automated meta-parameter optimization in high-dimensional discrete parameter spaces 
Bergstra Yamins & Cox (2013)

L = loss function Gradient descent eq: 

In current practice: 

 𝜆 = learning rate

L = loss computed from large numbers of externally-provided object category 
labels. 

dp

a

dt

= ��(t) · hr
paL(x)ix2D

D = dataset



Model Training Regimen

ImageNet (2012).   Thousands of images in thousands of categories.  



Model Training Regimen

train: real photos



generalize?
Basic

categorization

Model Training Regimen

train: real photos test: neural stimuli



Basic
categorization

removed categories of photos that 
appeared in the test stimuli 

(animals, boats, cars, chairs, faces, fruits, planes, tables)

Model Training Regimen

train: real photos test: neural stimuli

generalize?



Basic
categorization

removed categories of photos that 
appeared in the test stimuli 

(animals, boats, cars, chairs, faces, fruits, planes, tables)

Model Training Regimen

train: real photos test: neural stimuli

generalize?

→  Specific 4-layer model that achieved high recognition performance.



Performance Generalization

Basic
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IT Neurons Track Human Performance

At high variation levels,  IT much better than  V4 and existing models.
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Yamins* and Hong* et. al. PNAS (2014)

… but humans are much less affected. 

V4 loses out at higher variation:

… as is the IT neural population. 



Performance Comparison

New model comparable to IT / human performance levels. 
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At high variation levels,  IT much better than  V4 and existing models

Yamins* and Hong* et. al. PNAS (2014)



Ventral Stream as Stacked Cortex

GOAL:  Predictive model of single-neuron 
responses throughout the ventral stream to 

arbitrary image stimuli. 

Img 1       Img 2              Img 5760

...

Neuron 1
Neuron 2
Neuron 3

Neuron 296

...

Get quantitative hypothesis
for the network
that generated
this data  —> 



IT Site 150 IT Site 56 IT Site 42

Predicting IT Neural Responses 

Images sorted first by category, then variation level. 
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Model prediction
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Pixels = distinct model

Yamins* and Hong* et. al. PNAS (2014)



Layer 
1

Neural data

Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables

Captures low variation image response patterns … 



Layer 
1

Neural data

Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables

… but fails to capture higher 
variation response patterns. 



Layer 
1

Neural data Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables

Layer 
2



Layer 
1

Neural data Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables

Layer 
2

Layer 
3



Layer 
1

Neural data Model prediction

Layer 
2

Layer 
3

Animals Boats Cars Chairs Faces Fruits Planes Tables

Top 
Layer

Building tolerance while maintaining selectivity
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Yamins* and Hong* et. al. PNAS (2014)
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Yamins* and Hong* et. al. PNAS (2014)
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Performance constraints Yamins* and Hong* et. al. PNAS (2014)
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Architectural constraints

Performance constraints Yamins* and Hong* et. al. PNAS (2014)
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Performance constraints + architectural constraints → better neural prediction



Predicting IT Neural Responses 

What about intermediate layers?

ii. compare all model layers to intermediate visual areas (V4)

i. compare intermediate model layers to IT neural data



Predicting V4 Neural Responses 

V4 unit 60

Animals Boats Cars Chairs Faces Fruits Planes Tables



Predicting V4 Neural Responses 

V4 unit 60

Animals Boats Cars Chairs Faces Fruits Planes Tables

Layer 
1

Top 
Layer

Neural data Model prediction



Predicting V4 Neural Responses 

Layer 
1

Layer 
2

Layer 
3

Top 
Layer

Neural data

Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables
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Yamins* and Hong* et. al. PNAS (2014)



Investigating fits as a function of model layer :

IT fit increases at each layer.   In contrast, V4 fit peaks and then 
goes down. 

1 2 3 Top 1 2 3 Top

0.1

0.3

0.5

Model Layers

E
xp

la
in

ed
 V

ar
ia

nc
e IT Predicitivity V4 Predicitivity

Layer-area correspondence

Yamins* and Hong* et. al. PNAS (2014)



In submission:   model lowest layer is best explanation of  
imaging data in V1.  (with Darren Seibert and Justin Gardner)

Model output at lowest layer resembles Gabor wavelets:

Layer-area correspondence

Layer 1 Filters 



Complement standard “from below” approach … 

Behavioral “Top-Down” constraints

→
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Complement standard “from below” approach … 

Behavioral “Top-Down” constraints



→

Complement standard “from below” approach … 

Behavioral “Top-Down” constraints



→

Complement standard “from below” approach … 

Behavioral “Top-Down” constraints



←

Complement standard “from below” approach … with behavioral constraints

Behavioral “Top-Down” constraints



←

Complement standard “from below” approach … with behavioral constraints

Behavioral “Top-Down” constraints



←

Complement standard “from below” approach … with behavioral constraints

Behavioral “Top-Down” constraints



←

Complement standard “from below” approach … with behavioral constraints

Behavioral “Top-Down” constraints

Similar ideas and results:  
Khaligh-Razavi & Kriegeskorte (2014), 

Guclu & Van Gerven (2015), Cichy & Oliva (2015)



Beyond categorization

Category

Identity

 plane

f16



Beyond categorization

Position



Beyond categorization

Size



Beyond categorization

Aspect Ratio
and Angle



Beyond categorization

Category

Identity

3-D Object Scale

Perimeter

2-D Retinal Area

 plane

f16

rz

rx
ry

Bounding Box 

Aspect Ratio

Major Axis Length

Major Axis Angle

X and Y Axis

Position

Pose in 

each axis

We can quickly assess the scene as a whole. 



Where and how are all these properties coded neurally? 
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Bounding Box
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Aspect and Angle

 

V1

ITV2

V4 ???



Aggregation over identity-preserving 
transformations, e.g. translation.

Beyond categorization

“Standard word model” predicts:  not at the top of the ventral 
stream. 



Beyond categorization

“Standard word model” predicts:  not at the top of the ventral 
stream. 

Aggregation over identity-preserving 
transformations, e.g. translation.

V2

V4

IT

V1

Receptive Field Size  ↑

Category Invariance ↑

categorization



Beyond categorization

“Standard word model” predicts:  not at the top of the ventral 
stream. 

V2

V4

IT

V1

Receptive Field Size  ↑

Category Invariance ↑

(e.g.) Position Sensitivity ↓

position / size estimation

pose?

categorization
Aggregation over identity-preserving 
transformations, e.g. translation.



Where and how are all these properties coded neurally? 

rz

rx ry

Category

Identity

 plane

f16

Position

Size

Bounding Box

Pose

Aspect and Angle

 

V1

ITV2

V4 earlier visual areas? 

dorsal stream?



Beyond categorization

X-Axis Position

Training Timecourse
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 P

er
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rm
an

ce

0.70

0.75

0.80

Unexpected observation: 

Training on 
categorization task

Increased performance on 
position estimation task.

even though the goal was to become INVARIANT to position

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Beyond categorization

Category optimization → improved performance on non-categorical tasks. 

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Unexpected observation #2: 
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Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Beyond categorization

Unexpected observation #2: 

Increased performance on 
position estimation task

at each model layer.
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Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Beyond categorization

Performance on non-categorical tasks increases at each layer. 

For all tasks of visual interest we could measure in our test dataset:



Beyond categorization

What do the data say? 



Population Decoding

IT cortex V4 cortex
V1-like model pixel control
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Population Decoding

 V4 >  V1    for most tasks IT > V4,  V1   for all tasks 

Categorization Identification
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Population Decoding

“Standard” receptive field-mapping stimuli w/ position and orientation variation:

X-position

Y-position

Orientation



Population Decoding

  V1 > V4, IT    for “standard” tasks

X-Position Y Position

0.0

0.6

0.0

0.6

Orientation
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IT cortex V4 cortex
V1-like model pixel control

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Human Psychophysical Measurements



Monkey Neurons vs Humans 

performance  ~ k * log(N)
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Somewhat newish ideas about IT? 
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H4: Simultaneous build-up of encoding



Somewhat newish ideas about IT? 

Provides support to a hypothesis for what IT does:  

“Inverting the generative model of the scene”

2. “Lower-level” properties are not that low-level — at least, with complex objects 
and backgrounds.  

1. IT is NOT invariant. Strict generalization of simple-to-complex cells:  no.   

3. Categorization and non-categorical properties “go together” — not just that 
“not all (e.g.) position information is lost” (MacEvoy 2013, DiCarlo 2003)



Alex Kell Josh McDermottSam Norman-
Haignere

Auditory Cortex



Auditory Cortex Background



Auditory Cortex Background

(early)

How are circuits making sense of complex sound patterns? 
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Core / Belt / Parabelt Structure

Tramo et. al, Curr. Opin. Neuro. (1999)
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Spatiotemporal filtering? Shamma, 2005 
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???

???

Core / Belt / Parabelt Structure

*monkey
*

Our goal:  use computational models to help deepen understanding
of non-primary areas. 

Tramo et. al, Curr. Opin. Neuro. (1999)

Spatiotemporal filtering? Shamma, 2005 



Cochleagram representation

Time →

Fr
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→

Time →

Convolutional Neural Networks

Coarse model of the cochlea 

Waveform representation



Core Task-Driven Modeling Idea

Task-Driven Modeling:

1. Optimize for 
performance on a 
challenging auditory 
task, fixing parameters

2. Compare to  neural 
data. 

Apply to auditory tasks, where the regions themselves are less well known. 
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‣ music clips

‣ speech babble

‣ auditory scenes

600-way word-recognition task assembled by:

•  Recordings from standard speech recognition databases (TIMIT, WSJ) with 
words spoken at least 20 times

•  Combined with significant background noise

“She had your

dark suit in

greasy wash water

all year … ”

‘had’

‘suit’

‘wash’

‘year’

Optimize for Performance:  The Task 



‣ music clips

‣ speech babble

‣ auditory scenes

•  Recordings from standard speech recognition databases (TIMIT, WSJ) with 
words spoken at least 20 times

•  Combined with significant background noise
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Backgrounds → humans not close to ceiling. 

Optimize for Performance:  The Task 

600-way word-recognition task assembled by:
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Performance on 600-way word-recognition task

… for model, measured on held-out data with novel speakers and 
auditory background noise. 

Performance Results
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CNN & humans on same task



Word recognition in complex backgrounds

Behavioral comparison: 
CNN & humans on same task

21 conditions:
dry
 + 

4 different background types at 5 SNR levels: 

Auditory scenes 
Music

Speech babble
Speech-shaped noise



Word recognition in complex backgrounds

Behavioral comparison: 
CNN & humans on same task

21 conditions:
dry
 + 

4 different background types at 5 SNR levels: 

Auditory scenes 
Music

Speech babble
Speech-shaped noise

600 
AFC



Behavioral comparison: CNN & humans on same task

r = 0.97

HUMAN proportion correct

M
O

D
E

L 
pr

op
or

ti
on

 c
or

re
ct

1.0

0.5

0.0
0.0 0.5 1.0

Human v. model



Behavioral comparison: CNN & humans on same task

Music

Speech 
babble

Auditory scenes 
Music

Speech babble
Speech-shaped 

LEGEND



Behavioral comparison: CNN & humans on same task

Music

Speech 
babble

Auditory scenes 
Music

Speech babble
Speech-shaped 

LEGEND



Behavioral comparison: CNN & humans on same task

Music

Speech 
babble

Auditory scenes 
Music

Speech babble
Speech-shaped 

LEGEND



Behavioral comparison: CNN & humans on same task

Music

Speech 
babble

Auditory scenes 
Music

Speech babble
Speech-shaped 

LEGEND

r = 0.97

HUMAN proportion correct

M
O

D
E

L 
pr

op
or

ti
on

 c
or

re
ct

1.0

0.5

0.0
0.0 0.5 1.0

Human v. model



Behavioral comparison: CNN & humans on same task

Music

Speech 
babble

Auditory scenes 
Music

Speech babble
Speech-shaped 

LEGEND

r = 0.97

HUMAN proportion correct

M
O

D
E

L 
pr

op
or

ti
on

 c
or

re
ct

1.0

0.5

0.0
0.0 0.5 1.0

Human v. model



Behavioral comparison: CNN & humans on same task

Music

Speech 
babble

Auditory scenes 
Music

Speech babble
Speech-shaped 

LEGEND

r = 0.97

HUMAN proportion correct
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1.0

0.5

0.0
0.0 0.5 1.0

Human v. model

NB: 
CNN optimized 

for task 
performance
not for human 
behavior match



Does distortion  in a periphery-like representation
explain pattern of performance?

Measure physical distortion of background noise
Dry Wet |Dry - Wet| 

Time

Fr
eq
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Distortion in a highly nonlinear feature space 
explains the pattern of performance.

Task-Optimized CNN has discovered proper space.



Imaging Experiment

Man speaking
Flushing toilet
Pouring liquid
Tooth-brushing
Woman speaking
Car accelerating
Biting and chewing
Laughing
Typing
Car engine starting
Running water
Breathing
Keys jangling
Dishes clanking
Ringtone
Microwave
Dog barking

Road traffic
Zipper
Cellphone vibrating
Water dripping
Scratching
Car windows
Telephone ringing
Chopping food
Telephone dialing
Girl speaking
Car horn
Writing
Computer startup sound
Background speech
Songbird
Pouring water
Pop song
Water boiling

Guitar
Coughing
Crumpling paper
Siren
Splashing water
Computer speech
Alarm clock
Walking with heels
Vacuum
Wind
Boy speaking
Chair rolling
Rock song
Door knocking

.

.

.

*Sam Norman-Haignere, Nancy Kanwisher, and Josh McDermott

fMRI response data collected* on 165 commonly heard natural sound stimuli. 



For each voxel, measured average response to each sound:

Imaging Experiment



Response Magnitude

Imaging Experiment

11065 Voxels

16
5 
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For each voxel, measured average response to each sound:

Data matrix:   voxels  X  sounds. 
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Imaging Experiment

layer N?
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Neural predictivity: the ability of model to predict each individual 
voxel's activity using linear regression. 



0 1

Response Reliability at Voxel Level



0 10.800.35

Model Productivity at Best Layer



0 10.800.35

Model Productivity at Best Layer

Median Voxel Predictivity 
~80%.



Median Predictivity as a Function of Model Layer



-.2 .20

Predictivity Difference Between High and Low Model Layers



-.2 .20

Predictivity Difference Between High and Low Model Layers

Early layers better explanation of 
primary cortex, higher layers better 
explanation of non-primary cortex.



0
-.15 .15

Comparison to Spectrotemporal Filtering Model



0
-.15 .15

Comparison to Spectrotemporal Filtering Model

Significant improvement relative to 
existing models,

but especially in non-primary areas.



Tonotopic 
(⊂ Primary)

Differentiation by Region of Interest



Tonotopic 
(⊂ Primary)

Speech-selective
(⊂ Non-primary)

Differentiation by Region of Interest



Comparison of Predictivity by RoI

Tonotopic Pitch Music Speech

Random Filters (but *not* random architecture)

Spectrotemporal features (Shamma, 2005)

Task-optimized filters



primary auditory cortex

. . .

Word Recognition

Music Genre 
Identification

Ongoing: Functionality Organization by Task



primary auditory cortex

. . .

Word Recognition

Music Genre 
Identification

Ongoing: Functionality Organization by Task

Finer structure: phoneme, 
biphone, triphone hierarchy?
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Yamins et. al. (2014)

Higher visual cortexAuditory cortex

High-variation task performance vs:



Principle of “Goal-Driven Modeling”



“Mercedes behind 
Lamborghini, on a field 
in front of mountains.”

“Hannah is good at 
compromising”

visual
cortex

auditory
cortex

Heuristic of “Goal-Driven Modeling”



V1

. . .

primary auditory cortex

. . .

“Mercedes behind 
Lamborghini, on a field in 

front of mountains.”

“Hannah is good at 
compromising”

Heuristic of “Goal-Driven Modeling”



But what type of understanding is this? 



But what type of understanding is this? 
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not saying this type of understanding is impossible … 
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Model Architecture Class

Deeper networks ...
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...

1. Formulate 
comprehensive 
model class (CNNs)

Yamins & DiCarlo.  
Nat. Neuro. (2016)



2. Choose challenging, 
ethologically-valid tasks 
(categorization)
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Localization
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Categorization
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1. Formulate 
comprehensive 
model class (CNNs)

Yamins & DiCarlo.  
Nat. Neuro. (2016)
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3. Implement generic 
learning rules (gradient 
descent)

1. Formulate 
comprehensive 
model class (CNNs)

2. Choose challenging, 
ethologically-valid tasks 
(categorization)

Yamins & DiCarlo.  
Nat. Neuro. (2016)



> Map to brain data. (ventral stream)
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Yamins & DiCarlo.  
Nat. Neuro. (2016)

3. Implement generic 
learning rules (gradient 
descent)

1. Formulate 
comprehensive 
model class (CNNs)

2. Choose challenging, 
ethologically-valid tasks 
(categorization)
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argmin
a2A

[L(p⇤a)]

where p* is result of

A = architecture class                            L = loss function          D = dataset

dp

a

dt

= ��(t) · hr
paL(x)ix2D

“task”

“learning rule”
1. 2.

3.



Principle of “Goal-Driven Modeling”

Heuristic of “Goal-Driven Modeling”

… after all at some point, for any given task, 
you’ll probably “go over the hump”  …

perhaps when you exceed human 
performance or overfit on that task
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New Lab:  Sep 2016

MIT / BCS Stanford

neuroailab.stanford.edudicarlolab.mit.edu

http://neuroailab.stanford.edu
http://dicarlolab.mit.edu


Regions selective for :
• faces

• bodies
• places

• color

R. Lafer-Sousa and BR Conway,  Nat. Neurosci (2013) Color-biased regions

Where do these patches come from? 

• In-born built-in structure??

• or developmentally determined by domain-
specific experience?

Face patches

Q1: Functional Organization in Higher  Visual Cortex
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Shape / curvature?

“Second-order” 
conjunctions

virtual electrophysiology 
in models
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Q3:  Predicting “In-Head” Neural Perturbations

Perturb:
Observe: units in different layer

Perturb:
neural population

Observe:
neural population

prediction

measurement



Q4:  Linear Readout as a Model of Neural Decoding

linear decoder?
IT features behavior

‣Nonlinear?  Temporal instead 
of rate code?

‣View the process realtime? 

‣How are they learned?  What types of 
(e.g.) regularizations are implemented?

‣Default readouts and task switching 
(“hyperplane management”)

‣XX Put in Rishi learning 
slides



Q5: Role of  Top-Down, Recurrent Connections

H1:  Feedback implements learning of filters — form of long-term 
memory — not online 

DOG

RGC LGN

V1 V2

V4 PIT

T(•)

CIT AIT

?? ?

backprop or other long-term memory error signal

label?



Q5: Role of  Top-Down, Recurrent Connections

H2:  Feedback solves hard cases that aren’t embedded in single 
feedforward volley …. like ambiguity.   Online inference in the 
ventral stream.    (Dallenbach’s cow)

multiple inference volleys



Q5: Role of  Top-Down, Recurrent Connections

H3a:  Downstream, online feedback helps solve dynamic problems  
 like (e.g.) task switching.  

DOG

RGC LGN

V1 V2

V4 PIT

T(•)

CIT AIT

?? ?

‣ category  
‣ identity 
‣position 
‣ size 
‣pose 
‣…



Q5: Role of  Top-Down, Recurrent Connections

H3a:  Downstream, online feedback helps solve dynamic problems  
 like (e.g.) task switching.  

DOG

RGC LGN

V1 V2

V4 PIT

T(•)

CIT AIT

?? ?

chosen

behavior

stored exogenous signal

‣ category  
‣ identity 
‣position 
‣ size 
‣pose 
‣…



Q5: Role of  Top-Down, Recurrent Connections

H3a:  Downstream, online feedback helps solve dynamic problems  
 like (e.g.) task switching.  

“Hyperplane  
Management”

DOG

RGC LGN

V1 V2

V4 PIT

T(•)

CIT AIT

?? ?

chosen

behavior

stored exogenous signal

‣ category  
‣ identity 
‣position 
‣ size 
‣pose 
‣…



Q5: Role of  Top-Down, Recurrent Connections

Distinguished ventrally from H2 (“hard cases”) by the nature of the 
task that elicits it — (e.g.) pre-cuing (volitional control) instead of  
(e.g.) passive viewing. 

H3b:  Task switching algorithms reach down into ventral stream — 
benefit from nonlinear combinations of gating variable and IT 
features — e.g., attentional effects

size
pose

position

category
identity

exogenous signal



Q5: Role of  Top-Down, Recurrent Connections

Something about relationship to generative models



Q6: How Is Visual Learning Implemented?

Many parameters, P

How are they learned?

L = loss function 
Gradient descent eq: 

 𝜆 = learning rate



Q6: How Is Visual Learning Implemented?

Many parameters, P

How are they learned?

L = loss function 
Gradient descent eq: 

In current standard practice: 

 𝜆 = learning rate

L = soft-max loss computed relative large numbers of 
externally-provided semantic labels. 



Q6: How Is Visual Learning Implemented?

Many parameters, P

How are they learned?

L = loss function 
Gradient descent eq: 

In current standard practice: 

 𝜆 = learning rate

L = loss computed via large numbers of externally-
provided semantic labels. 

Ideally: 
L = un- or semi-supervised function computable from 
easily accessible data about agent’s environment



Q6: How Is Visual Learning Implemented?

Many parameters, P

How are they learned?

L = loss function 
Gradient descent eq: 

 𝜆 = learning rate

(1) Which parameters are learned vs developed or evolved?

(2) What are the right loss functions(s)? 

(3) How are the loss functions and the GDE implemented/
approximated via neural circuits? 



Q7: Other Sensory Domains? 

Can goal-drive modeling approaches generalize to other areas? 

For example, in auditory cortex:

‣can HCNN models explain higher auditory cortex? 

‣which tasks best explain functional organization of AC? 

‣how to auditory-optimized architectures related to visual ones? 



*monkey
*

Core / Belt / Parabelt Structure

Tramo et. al, Curr. Opin. Neuro. (1999)



???

???

Core / Belt / Parabelt Structure

*monkey
*

Spatiotemporal filtering? 

Example: use computational models to help deepen understanding
of non-primary areas. 

Tramo et. al, Curr. Opin. Neuro. (1999)



Core Task-Driven Modeling Idea

Task-Driven Modeling:

1. Optimize for 
performance on a 
challenging auditory 
task (600-way work 
recognition in noisy 
speech)

2. Compare to  neural 
data. 

Apply to auditory tasks, where the regions themselves are less well known. 

LN

LN

...
LN

LN

...

LN

LN

LN

...

LN

...

LN

LN
layer 2layer 1

layer 3

layer 4



Which layer best predicts each voxel’s responses?

Lower layer

Higher  layer

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Primary auditory cortex: predicted by lower CNN layers.
Non-primary auditory cortex: predicted by higher CNN layers.

CNN suggests hierarchical functional 
organization of auditory cortex.
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V2-like
HMAX

PLOS09

SIFT

r = 0.87 ± 0.15
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V1-like

Pixels

Yamins et. al. (2014)

Higher visual cortexAuditory cortex

High-variation task performance vs:



Q8: Integration of Working Memory

Many visual behaviors beyond vision at a glance (e.g.):

‣Scene understanding over multiple saccades

‣Strategic decision-making in complex environments

Involve integration of working memory, likely via RNNs. 

DOG

RGC LGN

V1 V2

V4 PIT

T(•)

CIT AIT

?? ? Actio
n



Digging deeper into understanding visual cortex

Match between models and data at category confusion level is 
pretty good …

H
um

an
 

Pe
rfo
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ce

Model Performance

IT V4

Model

Neural Decode Performance



Digging deeper into understanding visual cortex

Match between models and data at category confusion level is 
pretty good …

Elias 
Issa

Rishi 
Rajalingham

Kohitij 
Kar

Jim 
DiCarlo

Kailyn 
Schmidt

work of: 

V1
HMAX

Monkey GoogLeNet (v3)
synthetic trained

Object grain



Digging deeper into understanding visual cortex

Match between models and data at category confusion level is 
pretty good … but less good at *image* grain:
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Digging deeper into understanding visual cortex

Match between models and data at category confusion level is 
pretty good … but less good at *image* grain:

Elias 
Issa

Rishi 
Rajalingham

Kohitij 
Kar

Jim 
DiCarlo

Kailyn 
Schmidt

work of: 

V1
HMAX

Monkey GoogLeNet (v3)
synthetic trained

Object grain

GoogLeNet (v3)
synthetic trained

Monkey

V1
HMAX

Image grain

(remember, neural fits only ~50%)…
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Model Architecture Class
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??
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PITV2

V4V1

CIT
AIT

argmin
a2A

[L(p⇤a)]

where p* is result of

A = architecture class                            L = loss function          D = dataset

dp

a

dt

= ��(t) · hr
paL(x)ix2D

“task”

“learning rule”
1. 2.

3.



Primary 

Belt

Parabelt

...

...

...

...

Localization

Model Architecture Class

Deeper networks Categorization

Word recognition

...

...

...

...

...

...

...

...

??

??

??

??

 
PITV2

V4V1

CIT
AIT

argmin
a2A

[L(p⇤a)]

where p* is result of

A = architecture class                            L = loss function          D = dataset

dp

a

dt

= ��(t) · hr
paL(x)ix2D

“task”

“learning rule”
1. 2.

3.



Digging deeper into understanding visual cortex

Three hypotheses: 

3) the learning rule (argmin, SGD, &c) rule is wrong 
bet: some version of approximate backprop-like error correction is reasonable

2) the architecture class (A) is wrong 

1) the task (loss function L or dataset D) is wrong



Optimize models of the current structure to directly 
match the neural data … 

Better tasks (loss functions)



Model class is 
wrong

Task 
is wrong

yesno

Better tasks (loss functions)

Optimize models of the current structure to directly 
match the neural data … 



Model class is 
wrong

Task 
is wrong

yesno

… but not enough neural data? 

Better tasks (loss functions)

Optimize models of the current structure to directly 
match the neural data … 



Optimize models of the current structure to directly match the 
behavioral data … then check against neural data.

Model class is 
wrong

Task 
is wrong

yesno

Better tasks (loss functions)



Elias 
Issa

Rishi 
Rajalingham

Kohitij 
Kar

Jim 
DiCarlo

Kailyn 
Schmidt

Eli 
Wang

Model class is 
wrong

Task 
is wrong

yes

Better tasks (loss functions)

no

Optimize models of the current structure to directly match the 
behavioral data … then check against neural data.



Elias 
Issa

Rishi 
Rajalingham

Kohitij 
Kar

Jim 
DiCarlo

Kailyn 
Schmidt

Eli 
Wang

(i) predict vector of errors

layer N?

LN

LN

...

LN

LN

...

LN

LN

LN

...

LN

...

LN

LN

imagenet

error pattern

softmax

regression

Better tasks (loss functions)

Optimize models of the current structure to directly match the 
behavioral data … then check against neural data.



Elias 
Issa

Rishi 
Rajalingham

Kohitij 
Kar

Jim 
DiCarlo

Kailyn 
Schmidt

Eli 
Wang

(ii) as actual error pattern

layer N?

LN

LN

...

LN

LN

...

LN

LN

LN

...

LN

...

LN

LN

imagenetsoftmax

error pattern

Better tasks (loss functions)

Optimize models of the current structure to directly match the 
behavioral data … then check against neural data.



Elias 
Issa

Rishi 
Rajalingham

Kohitij 
Kar

Jim 
DiCarlo

Kailyn 
Schmidt

Eli 
Wang

(iii) as multiplier — indicator of niche? 

error-inverse weighting
layer N?

LN

LN

...

LN

LN

...

LN

LN

LN

...

LN

...

LN

LN

imagenetsoftmax

Better tasks (loss functions)

Optimize models of the current structure to directly match the 
behavioral data … then check against neural data.



Fit neural data

less normative “task” more normative “task”

Better tasks (loss functions)



Fit neural data Fit categorization 
error pattern

…
check against neural 

data

less normative “task” more normative “task”

Better tasks (loss functions)



Solve non-
categorization 

tasks
. . .

check against 
neural data

Fit neural data Fit categorization 
error pattern

…
check against neural 

data

less normative “task” more normative “task”

Better tasks (loss functions)



Solve non-
categorization 

tasks
. . .

check against 
neural data

Fit neural data Fit categorization 
error pattern

…
check against neural 

data

But which non-categorical tasks? 

less normative “task” more normative “task”

Better tasks (loss functions)



Chengxu Zhuang

Pose / position
estimation

Normal/Depth
estimation Segmentation

Better tasks (loss functions)



Nick
Haber

 x
 x

 x

x

x

x

0

1

2

0

1

2 . . .
. . .

Damian 
Mrowca

......

...

...

...

...

...

...

working memory network 

Better tasks (loss functions)

Fei-Fei Li

Future prediction under agent-controlled actions



......

...

LN

LN

LN

...

... ...

pose =
(0, 45, 0)

category = “bald eagle”

approximate
surface
normal map

shallow category-dedicated network

Where should the tasks be imposed? (intermediate?) 

How much work can less heavily supervised tasks do? 

Strategy: optimize over architectures for solving 
joint tasks, compare to neural data

Better tasks (loss functions)



Comparing to Neural Data

✴ Various second-order metrics: encoding regression, RSAs, etc

✴ Behavioral consistency — pattern of errors at various grains of detail

✴ But really, there is a developmental hypothesis implicit in these models.   Time 
course of all metrics should be matched: 

  C
at
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riz

ai
to

n 
P
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ce

0.75

0.55

0.35

Training Timecourse (thousands of iterations)

Layer-1 Filters at t = 0

... at t = 1

... at t = 40

Use developmental data 
separate more biologically 
correct loss functions from 
less correct ones? 



Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

work of 

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures



What task(s)? 

a) vanilla categorization
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What task(s)? 
a) vanilla categorization
b) time-discounting

L =
X
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�t · Lt

be accurate but also fast
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What task(s)? 
a) vanilla categorization
b) time-discounting

L =
X
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c) heavy occlusion &c
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What task(s)? 
a) vanilla categorization
b) time-discounting

L =
X

t

�t · Lt

be accurate but also fast

strategy: optimize for tasks check against static & dynamic data

c) heavy occlusion &c

Jim 
DiCarlo

Jonas 
Kubilius

Kohitij
Kar

Maryann 
Rui

Aran 
Nayebi

Surya
Ganguli

Better architectures
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✴ Potentially hierarchical structure
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Rodent Somatosensory Cortex

Petersen, 2007

✴ Spatiotopic sensor

✴ Potentially hierarchical structure

✴ Spatially-structured input data

✴ Poorly understood higher 
cortical areas

Hypothesis: can get a model for this cortical cascade by 
optimizing properly-sized CNN with whisker-like sensor input

for some ethologically relevant somatosensory task. 
Chengxu
Zhuang

Mitra Hartmann 
& Lab



Rodent Somatosensory Cortex

First have to build a model of the sensory to gather data. 

Using published data from Mitra Hartmann’s group

Chengxu
Zhuang
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& Lab



Rodent Somatosensory Cortex

First have to build a model of the sensory to gather data. 

Using published data from Mitra Hartmann’s group

Follicle
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Rodent Somatosensory Cortex

First have to build a model of the sensory to gather data. 

Chengxu
Zhuang

Mitra Hartmann 
& Lab



Rodent Somatosensory Cortex

Validate sensor on one-object tasks … (teddy vs. duck) 

train/test splits with different:
✴ attack vectors

✴ attack speed

✴ object rotations

✴ object size

Chengxu
Zhuang

Mitra Hartmann 
& Lab



Rodent Somatosensory Cortex

Train on shape recognition and/or normal estimation task, 
compare to neural data

train/test splits with different:
✴ attack vectors

✴ attack speed

✴ object rotations

✴ object size

Validate sensor on one-object tasks … (teddy vs. duck) 

Chengxu
Zhuang

Mitra Hartmann 
& Lab



Rodent Somatosensory Cortex

somatosensation

vision

audition
Primary 

Belt

Parabelt

...

...

...

...

Localization

Model Architecture Class

Deeper networks Categorization

Word recognition

...

...

...

...

...

...

...

...

??

??

??

??

 
PITV2

V4V1

CIT
AIT

If successful:



> Map to brain data. (ventral stream)
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Localization

Model Architecture Class

Deeper networks Categorization

Word recognition

...
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...

...

??

??

??

??

 
PITV2

V4V1

CIT
AIT

> Formulate 
comprehensive 
model class (CNNs)

> Choose challenging, 
ethologically-valid tasks 
(categorization)

> Implement generic 
learning rules (gradient 
descent)



> Map to brain data.  
(PFC, Hippocampus, &c)

Primary 

Belt

Parabelt

...

...

...

...

Localization

Model Architecture Class

Deeper networks Categorization

Word recognition

...

...

...

...

...

...

...

...

??

??

??

??

 
PITV2

V4V1

CIT
AIT

> Formulate 
comprehensive 
model class (CNNs + 
RNs)

> Choose challenging, 
ethologically-valid tasks 
(task switching/
memory)

> Implement generic 
learning and expansion 
rules

Mark 
Schnitzer

Jim 
DiCarlo

Kevin 
Feigelis



Q&A



Key Results

Task-driven modeling can make greatly improved quantitative models 
of high-level cortical areas.  

These models can lead to new qualitative insight about how the 
brain solves sensory tasks.

These concepts are useful across multiple sensory modalities. 



IT Neurons Track Human Performance

IT matches human error patterns as well as raw performance.

Low-Variation Face subordinate tasks. 

IT Population V4 Population
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Neural Decode Performance



Neural Response Prediction

Some kind of mapping is necessary.

Source Brain Target Brain

Img 1       
Img 2       
.
.
.
.
Img 5760

...

Neuron 1        2       .   .   .   .                   150

...

Img 1       
Img 2       
.
.
.
.
Img 5760

...

Neuron 1        2       .   .   .   .                   150

...

??



Here, we use linear regression.  

Target Brain

Img 1       
Img 2       
.
.
.
.
Img 5760

...

Neuron 1        2       .   .   .   .                   150

...

Img 1       
Img 2       
.
.
.
.
Img 5760

...

Neuron 1        2       .   .   .   .                   150

...

T = M * S

Source Brain

Neural Response Prediction



Neural predictivity: the ability of model to predict each individual 
neural site’s activity.    

Neural Recordings from IT and V4

. . . . . .

LN

LN

...

LN

LN
...

LN

LN

LN

...

Neural site unit ~ sparse 
linear combination of model 
units

Linear regression with fixed 
training images.

Accuracy  =  goodness-of-fit 
on held-out testing images 
(Cross validated)

Neural predictivity = median 
accuracy over all units.



Neural Recordings from IT and V4

 

V1

ITV2

V4

. . . . . .

LN

LN

...
LN

LN

...

LN

LN

LN

...

LN

...

LN

LN

. . .

. . .

Neural predictivity: the ability of model to predict each individual 
neural site’s activity.    
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Performance Comparison
Low Var. Medium Var. High Var. Yamins* and Hong* et. al. PNAS (2014)



Neural Data Recording

Output = Binned spike 
counts in 70ms-170ms 
post stimulus 
presentation; averaged 
over 25-50 reps of each 
image. 

site
1

site 
2

img 1 img 2 img 5760

. . .

100ms 100ms 100ms 100ms 

blank blank

100ms 

-50     0    50  100 150 200  250 

site 
296

-50     0    50  100 150 200  250 -50     0    50  100 150 200  250 

. .
 .

. . .



Site 11 Site 77

Site  10 Site 54 Site 43

Site 102

x

y

Single Site Responses

heat map value at x, y =
     response averaged over all
     images where object center is in 
     position x, y

Best single position-encoding sites.



Site 11 Site 77

Site  10 Site 54 Site 43

Site 102

x

y

Single Site Responses

heat map value at x, y =
     response averaged over all
     images where object center is in 
     position x, y

Best single position-encoding sites.

Similar to MacEvoy (2013) and DiCarlo(2003)
except — dramatically more variation. 
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heat map value at x, y =
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Monkey Neurons vs Humans 
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Monkey Neurons vs Humans 

Basic Categorization

Subordinate Identification

X-axis Position

Y-axis Position

Bounding Box Size

X-axis Size 

Y-axis Size

3-D Object Scale

Major Axis Length

Aspect Ratio 

Major Axis Angle

Z-axis Rotation

Y-axis Rotation

X-axis Rotation  

Pix

—

—

—

—

—

—

—

IT

773 ± 185

496 ± 93

1414 ± 403

918 ± 309

322 ± 90

256 ± 87

237 ± 87

401 ± 90

201 ± 70

163 ± 61

804 ± 136

1932 ± 1061

369 ± 115

1570 ± 530

V4

2.2 × 10
6
 

4.4 × 10
6

5.2 × 10
5

2.5 × 10
4

1.7 × 10
4

9.8 × 10
3

3.8 × 10
3

3.2 × 10
4

1.1 × 10
4

951 ± 59

—

2.8 × 10
5

—

V1

—

—

3.0 × 10
7

8.7 × 10
6

—

3.4 × 10
7

9.5 × 10
6

—

—

6.5 × 10
3

—

—

—

—

—

—

—

—

—

—

—

= more than 10 billion sites required —

3.2 × 10
6

Mean over tasks, human-parity for IT is at ~700 multi-unit trial-averaged sites.
Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (in press)
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Somewhat newish ideas about IT? 
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Face Perception is Fast, Robust, and Accurate
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Selective Patches in Higher  Visual Cortex

Regions selective for :
• faces

R. Lafer-Sousa and BR Conway,  Nat. Neurosci (2013)

Face patches

Color-biased regions



Regions selective for :
• faces

• bodies
• places

• color

R. Lafer-Sousa and BR Conway,  Nat. Neurosci (2013) Color-biased regions

Face patches

Selective Patches in Higher  Visual Cortex



Regions selective for :
• faces

• bodies
• places

• color

R. Lafer-Sousa and BR Conway,  Nat. Neurosci (2013) Color-biased regions

Where do these patches come from? 

• In-born built-in structure??

• or developmentally determined by domain-
specific experience?

Face patches

Selective Patches in Higher  Visual Cortex



controlled rearing 

Selective Patches in Higher  Visual Cortex



controlled rearing 

????

Selective Patches in Higher  Visual Cortex



controlled rearing 

… in a computational model

????

Selective Patches in Higher  Visual Cortex



Model Training Regimen

ImageNet (2012).   Thousands of images in thousands of categories.  



remove all images containing faces
as well as all categories of photos containing animate objects

Model Training Regimen

question: how does removing this content affect the model?  

controlled rearing 
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Testing the base-line non-face model. 
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no faces or animate objects ...

Hierarchical Convolutional

Neural Network ...
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layer 6

.     
.     

.

... face-selective units identified
with a standard localizer ...

3



Hypotheses for existing of face-selective units: 

i.   face processing machinery is in-born

Testing the base-line non-face model. 

Original speculation:  we won’t find any (or statistically significantly 
many) face selective units because:



Original speculation:  we won’t find any (or statistically significantly 
many) face selective units because:

i.   face processing machinery is in-born

ii.  it is due to extensive post-natal experience with faces

Hypotheses for existing of face-selective units: 

Testing the base-line non-face model. 
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Testing the base-line non-face model. 

Kanwisher, 1997
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. . .
lower (or n.s.) 

numbers for several 
other tested categories
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Face
Photographs

Cartoon 
Faces Bodies Cats Scissors Chairs Houses
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averaged over images within 
category →

average ranked response over all face-selective units

Validating the face-selective units
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Validating the face-selective units



Possible explanation

How could this result be true? 



2-d MDS of three-d mesh distances for 128 objects in 16 categories.

Possible explanation

How could this result be true? 



Faces
Cars
Guns
Boats
Planes
Shoes

2-d MDS of three-3 mesh distances for 128 objects in 16 categories

Possible explanation

1) Faces are more clustered in shape space than most other categories

2) but they’re not totally isolated in shape space.   
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2-d MDS of three-3 mesh distances for 128 objects in 16 categories

 =  unit as gaussian blob in shape space. 

Possible explanation
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Possible explanation



Multi-array Electrophysiology Experiment

detailed comparison to face neurons



Predictions of Face-Selective Neural Responses 
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Predictions of Face-Selective Neural Responses 

Neural data

Images sorted by category
Animals Boats Cars Chairs Faces Fruits Planes Tables

IT Unit 53
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Regularized linear regression to map 
model units to neural units, 

predictions on held-out testing images. 



Predictions of Face-Selective Neural Responses 
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Predictions of Face-Selective Neural Responses 

Neural data

Model prediction

Explained Variance Across All Face Selective Units: 

With Faces in Training:  51.5 ± 3.9 %

Without Faces in Training:  50.8 ± 4.4 %

Animals Boats Cars Chairs Faces Fruits Planes Tables

IT Unit 53
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Images sorted by category



Conclusions

Models “raised” without faces can still have face-selective units. 

Some aspects of specialized face machinery may be explicable 
from the “null model” of general object recognition. 

A third hypothesis for the development of face (and other) 
selective regions:  

• In-born built-in structure or

• Developmentally determined by 
particular experience.

• Developmentally 
determined by general 
experience?

Consistent with Sugita (2008)



Future questions  / limitations

Better exploration of category selective across many categories as 
a function of contents of training data. 

More detailed comparison to neurophysiology of face patch 
system.  Freiwald & Tsao, 2011, Issa & DiCarlo 2014

Explicitly address question of spatial layout.  

Results here do NOT imply monkeys without face 
experience will necessarily have a *patch*.



Thanks to great colleagues!

Ha Hong Michael Cohen

Jim DiCarloNancy Kanwisher


