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Parallel vs. Serial

Turing machines are universal because they are
serial (and it doesn’'t take much hardware)

Conversely, some (large class of) problems
cannot be solved in parallel (dependencies..)

To achieve universal flexibility, inherently parallel
neural processing must be come serial



More Serial Advantages

Solving novel tasks requires novel combinations
of existing subroutines (or new subroutines,
which is much harder)

Serialization allows generic recombination of
subroutines.

Parallel processing requires separate hardware
for each routine, and connecting them is tricky..



Parallel is great too..

Fast, high-dimensional constraint satisfaction

Parallel gradient search learning: pursue many
different solutions in parallel (serial search takes
until the end of the universe..)

The human brain is the best known combination
of parallel and serial processing! (animals are too

parallel)



The Biological Architecture
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Proof of Concept: ACT-R
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BG production system forces serialization -> flexible combination of
productions. Goal buffer & declarative memory coordinate.



Leabra Biologically-based
Cognitive Architecture

Leabra Mechanisms
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Same framework accounts for wide range of cognitive neuroscience phenomena:
perception, attention, motor control and action selection, learning & memory,
language, executive function — all built out of the same neurons.


https://ccnbook.colorado.edu

PBWM System (bio LSTM)

Sensory Input Motor Output

Posterior Cortex: PFC: Context,
/O Mapping Goals, etc

I (gating)
PVLV: DA BG: Gating

(Critic) (modulation) | (Actor)

Three levels of modulation to get anything done..
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Basal Ganglia Reward Learning

(Frank, 2005...; O'Reilly & Frank 2006)

a) Dopamine Burst
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- Trial and error learning: action of updating PFC is evaluated
In terms of previous success associated with PFC state
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BG Gates Super -> Deep
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« Maintenance via Thalamocortical loops (TRC <-> Deep), BG disinhibits
» Superficial reflects inputs and maintenance
« Separate Maintenance vs. Output PFC / BG stripes



BG Gates Super -> Deep
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« Competition in GPi, GPe (and striatum) between Maint vs. Output, and diff stripes
» Pre-competition in GPe for NoGo veto power (cannot veto everything!)
« Asymmetric learning rate for dopamine dips vs. bursts on NoGo (D2) — hypercritical..



PBWM Applications

- Learns from raw trial & error experience to
perform complex working memory tasks,
including N-Back (Chatham et al, 2011), 1-2-AX
CPT (O'Reilly & Frank, 2006), Keep Track
(Friedman et al, in prep)

- Role of BG and DA on working memory tested
In @ number of expts (e.g., Frank & O'Reilly,
2000)



Demo of SIR model



PFC Is Exec, driven by bottom line..
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Proximal actions

(next few secs)

Broad action plans
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Executive Function
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Hippocampal System
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Sparse = Pattern Separation = rapid
binding of arbitrary information
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Combinatorial Instruction Following
(Huang, Hazy, Herd & O’Reilly, 2013)
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Serial vs. Parallel Summary

People can approximate a Turing machine by
using LSTM-like BG/PFC gating & working
memory (cf. “Neural Turing Machines”, Graves..)

Essential for combinatorial flexibility: recombining
existing subroutines to do novel tasks

While still leveraging huge advantages of parallel
learning and processing..



The 3R’s of Serial Processing

Reduce binding errors by serial processing:
spatial attention spotlight — eg DCNN’s that focus
on object BBox — less adversarial image issues..

Reuse same neural tissue across many different
situations — improved generalization (e.g., RN)

Recycle activity throughout network to coordinate
all areas on one thing at a time: consciousness



Relational Network (Santoro et al)

Final CNN feature maps RN
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RN reuses same low-dimensional (pairwise) weights for all possible
comparisons (using convolutional shared weights, in parallel).

But cannot generalize outside of training set (no combinatorial gen..)



Recurrent Processing -> Consciousness
(Lamme, 2006; cf. Bengio 2017)

(a) The feedforward sweep (b) Localized recurrent processing
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Consciousness is Unitary

Recurrence coordinates all areas on one thing (emerges via popular vote)
Consciousness is Functional

Helps organize, prioritize behavior — “focusing” key for difficult problems
Consciousness Flows

Temporal dynamics and information processing (multi-step cognition)



Recurrent Processing

Current DCNN'’s are almost exclusively
feedforward

Cortex is massively recurrent (bidirectional
excitatory connections)

Leabra model uses bidirectional excitatory
connections to drive error-driven learning
(O'Reilly, 1996) and constraint satisfaction (ala
Hopfield)



Remaining Mysteries

How do we learn a full combinatorial vocabulary
of productive subroutines?

What is the API? How do they communicate?
Language, spatial attention spotlight..

Cognitive sequencing, planning: how do we write
programs on the fly in our brains??
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