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Talk Outline

Neural Networks with External Memory
Reinforcement Learning with Memory Systems
e Some Limitations and Weaknesses Therein

The MEmory, INference, and Reinforcement Learning
Agent (MERLIN)

lts Behavior on Interesting Tasks Characterized by Partial
Observability

Re The Programmer’s Apprentice: Imitation-Learning for
Complex Skills (Motor Skills)



Neural Turing Machines (NTMs) and
Differentiable Neural Computers (DNCs)

* Trainable neural networks Read Vector
that can read and write to Outputs
external memory.

* Can instantiate simple
algorithms operating over
simple data structures
like lists and graphs.

* Have higher capacity
memory than LSTMs
(Hochreiter and
Schmidhuber, 1997)
alone.

Write Vector

(Graves, Wayne, Danihelka, arXiv 2014) (Graves, Wayne et al., Nature 2016)



Neural Turing Machines (NTMs) and
Differentiable Neural Computers (DNCs)

Read Vector

Outputs

NTMs are a little more

primitive / kludgy than DNCS./

Inputs Write Vector

(Graves, Wayne, Danihelka, arXiv 2014) (Graves, Wayne et al., Nature 2016)



A Simple DNC

Read Vector

Outputs

Reading from Memory

Read “Attention Weighting”
exp(kt - M,y [ia ])
Zj eXp(kt - M,y [.77 ]

Read Vector

m; = Z Wy [Z]Mt [i, ] Inputs

wy 1] =

Write Vector



A Simple DNC

Read Vector

Outputs

Writing to Memory \

Mt—l—l[ta ] = d;

Inputs Write Vector



A More Complicated DNC

d. Memory Usage
a. Controller b. Read & Write Heads c. Memory & Temporal Links

Output

Write Vector
» o s .

Write Key

Erase Vector )
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Read Key

Read Mode Free Gate Key Str. —’ Read 1
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Read Vectors | l

Supports reading items based on the order they were written as well.
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Supervised Training of RNNs /
DNCs




Supervised Training of RNNs /
DNCs

Backpropagation through Time



Write Location Read Location

INPUT OUTPUT

MEMORY

Example of an NTM (circa 2014) on a looped copy problem.

(LSTMs struggle on this.)



Adds

Location

Looped Copy

Inputs Outputs
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Associative List

Inputs Outputs
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Learning Complex Data
Structures (Random Graphs)

Time 1. Source Node
2. Source Node
3. Source Node

Labels:

_abe
_abe

_abe

Digital representations of
numbers between 0 and 999.

- Edge
- Edge
- Edge

_abe
_abe

_abe

Destination Node
Destination Node

Destination Node

_abe
_abe

_abe
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a. Read and Write Weightings
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Reinforcement Learning

a1 a9 as a4 as
f f 4 4 4

o ! w(a#hﬂ m(as|ha) m(azhs) m(aslhs) m(as|hs)

Maximize expected “return” Rt =Ty + T't4-1 + I't42 + T



Reinforcement Learning

a1 a9 as a4 as
4 4 4 4 4

o ! w(ai\hﬂ m(aslha) m(azhs) m(aglhs) m(as|hs)

T
Policy Gradient A x Z Rt VQ log W(at‘ht)
t=0



A Simple Memory-Based RL
Challenge (Memory Game)

Partially observed,
need to know “what is where”

(a kind of state estimation)




Control Architecture “a”

a. RL-LSTM
h
ENVIRONMENT POLICY
A 4
Sensory Data (Lg, Ut, Tt-1, Tt) —» O —p €4 T+ (g =

T ENCODER Policy Loss
ooc—’ a,t_l




Control Architecture “b”

b. RL-MEM

POLICY
as dt o0
Sl
L) N'\L )
47\/[75 e kt < ht
o M4
‘a_ /s
my
ENVIRONMENT
e
Sensory Data (Ital"t,rt—],Tt)_’ Oy —» € i (p ——-ee

T FNCEDER Palicy Loss
ooo—’ at_l




Remarkably

e Both these models fail to solve this
very simple task. Why?

e RL-LSTM: lacks capacity for
storing and search mechanism for
recalling positions and images.

10

<

-0

* RL-MEM: has capacity and search ¢, :: :
mechanism, but (we argue) policy & e
gradient RL does not provide the T e————————— |,
right objective function to 0 0

o

0 1 2 3 4 5

determine What IS Stored in memory- Number of Environment Steps 10¢

—
()
~

Negative VLB



Policy Gradient

e Policy gradient: relatively high variance (noisy) estimator
of performance improvement direction.

e trajectory dependent

e |ntuitively, feels wrong: memory for, say, the memory
game should not only develop through gradients from
success or failure due to trial and error action choices
(“motor twitches”).



Prediction, Compression, and
State Estimation

Classical Control: Separate State Estimation from Control Design

Our strategy: instead build perceptual representations and memories
by unsupervised predictive modeling / state estimation



Unsupervised Predictive Memory
in a Goal-Directed Agent
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Unsupervised Learning

Modern framework for unsupervised learning:

Variational Autoencoders (Kingma and Welling, 2013)
(Rezende and Mohamed, 2014)

q(z]z)|[p(2)
q(z|x) =

10g p(z) = Eqaio) Hogp(x\z) . KL[q(z\:v)Hp(z)]_




Unsupervised Predictive
Modeling

Sequential Variational Autoencoders or Variational RNNs
(Gregor, 2015), (Chung, 2015).

State variable (compressed representation) <t

Prior p(zt‘zlaahZQva'Za'°°7Zt—17at—1)

Posterior Q(Zt‘zla A1,22,02, ..., 2t—-1,0t—-1, xt)

Variational Lower Bound (VLB) log p(:)ﬁt |Zt) — KL[q‘ |p]
Prior is trained to predict posterior.

Posterior is trained to make minimal deviation from prior whilst propagating information
about observation.



What the Mechanism Looks
Like

v 4)

Sensory Data €t —» N ¢— P 4-— ht
ENVIRONMENT
TCNCODER KL Loss T
(It, v4, 141, T3) = Ot 4 i
A PCSTFRIOR
l DECODER
= U1

(I, Ry, B¢, Gp—1, Pe—1,T})

Reconstruction Loss

Two Modes:
1) prediction
2) inference / state estimation



Memory-Based Predictor

MEMORY-BASED PREDICTOR ‘ )

4 0 “.‘
® e Y. .‘s
‘ )/' -
FRIOR "
:

Sensory Data €t —» Ny 4— P 4= hy €=My ..
ENVIRONMENT | &
ENCODER KL Loss \xt".-
(It, v, m4—1, T3) = Ot 4 <
A PCSTFRIOR
l DECODER
...* at_l

(I, Ry, B¢, Gp—1, Pe—1,T})

Reconstruction Loss

Two-fold advantage: state variables are good representations;
also, memory helps prediction.



MERLIN

MERLIN READ-ONLY POLICY
MEMORY-BASED PREDICTOR
fy )

PRIOR ‘ )/ “-." =
Sensory Data €t —» Ny 4— D 4= hy €=My :
ENVIRONMENT

T CNCODER KL Loss T
(It,’Ut,’rt_l,'Tt)_" Oy q Rl = Ay — -

PCSTFRIOR Policy Loss
DECODER

(ft,Rt, ’(’)t, &t—la 'ﬁt—h Tt)

Reconstruction Loss

ooc+ at_ 1
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Truncation for Very Long Tasks

t =1 2 3 4 O

Here, unless otherwise specified, we truncate every 20 steps (15 steps per second).



e Bullet Problem
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Saliency and
“The Bullet Problem”
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Gluck and Myers, 1993
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MERLIN

M E RLI N READ-ONLY POLICY
MEMORY-BASED PREDICTOR " . ')
"""" > A'f[t"
Qj 7
PRIOR ‘ )/
Sensory Data €t —» N, 4— P 4= hy € mt
ENVIRONMENT &
T ENCODER KL Loss T \3
(It:vtert—l,’Tt)_" Oy q Rl = Ay — -

POSTERIOR Policy Loss
DECODER

(ft,Rt, ’(’}t, avt—la 'i;t—la Tt)

/ Reconstruction Loss

Return Prediction State variable z is only 200 dimensional

ooo+ at_ 1
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Return Prediction Error

Return Prediction
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Predictive Model (Prior vs. Pasterior) for Different Values
of Return Cost Coefficient
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Hierarchical Behavior

Memory-Based
Predictor Reading
from Memory




Arbitrary Visuomotor Mapping
(Wise and Murray, 2000)

Arbitrary Visuomotor
\YF-TeJollgle




Arbitrary Visuomotor Mapping
(Wise and Murray, 2000)
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Rapid Reward Valuation (One-
Shot)

- 8400
- 8200
()] :
' S - 8000 g
3 ] wws MERLIN  @== RL-LSTM
© - 7800 ¢ sos NEG.VLB e RL-MEM
ks - 7600 @
2 ; >
a 5 o 7400 2
0 _I | | | | | | | IL. 7000
00 02 04 06 08 1.0 12 14 16
Number of Environment Steps 10°
2.0 : 1.0 -
. :
S 15 0.8 -
: 23
O %)
> .0
B 1.0 - g 06
x To 04 -
- 0.5 _ , ol
- «== MERLIN first object © O
% e MERLIN subsequent S 0.2 -
x 00 T T T ]
0.0 - 1
-15 -10 -5 0 [ T T 1

Agent Steps before Consumption same  other  null



Rapid Reward Valuation (One-
Shot)

Rapid Reward
Valuation




An Episodic Task that Breaks
Gradient Flow

Block 1 Block 2 Block 3 Block 1’
]
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An Episodic Task that Breaks
Gradient Flow

Episodic Water Mazes




Episode Return

Learning Curves with Longer Temporal Credit Assignment Windows

e= MERLIN === MERLIN (tau=200) <= RLLSTM == RBL LSTM (tau=200) == R_L MEM == RL MEM (tau = 200)
Episodic Water Mazes
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Learning Curves with Longer Temporal Credit Assignment Windows

e= MERLIN <= MERLN (tau=200) == RLLSTM == RL LSTM (tau=200) == RLMEM == RL MEM (tau =200}

a. Arbitrary Visuomotor Mapping
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Latent Learning
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Latent Learning

Latent Learning




Learning from Demonstrations

Programmer’s Apprentice: (Waters and Rich, 1987)
The objective for programming is hard to write down!

Imitation is a useful proxy when the objective is hard to
articulate.

Maybe that’s why it was called the programmer’s
apprentice.



Learning Human Behaviors

Given human input-output measurements, how to build a
good imitation learner?

Simple approach is supervised learning or behavioral cloning:

T = (Sl,al,SQ,CLQ,Sg,CLg,...) m@aXZIOgPQ(alek)
k

Problem with this approach: if you find yourself in a state
unlike one the human demonstrated, the policy may do
anything.



Learning Human Behaviors

Another approach: make the achieved states / trajectories look
like one’s from demonstration data.

m@ax zk: lOg[p(3k+1 |Sk7 ak)pe(@k ‘Sk)]

Advantage: if the agent gets away from the distribution of
states, there is a motivation to get back.

Problem with this approach: It typically implies having a model
of transitions that is good. This can be hard for complicated
environments.



Learning Human Behaviors

Another approach: make marginal distributions over states
similar to the expert’s.

m@apr(sk)
k

Inverse Reinforcement Learning

Generative Adversarial Imitation Learning (Ho and Ermon,
2016) based on GANs (Goodfellow, 2014). Here, fool the

discriminator:

MAX Pdiscriminator (demonstration|sy )



Learning Human Behaviors

Generative Adversarial Imitation Learning (Ho and Ermon,
20106)

Learning Human Behaviors from Motion Capture by
Adversarial Imitation (Merel, Tassa, Dhruva TB, Sriram

Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, Nicolas
Heess, 2017)



Conditional GAIL

Note: no action information strictly needed; important, as

explained next

/ Generator \
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Algorithm

Algorithm 1

Input: Set of demonstration observations {z%,c%},_; 1
Randomly 1nitialize policy (7y) and discriminator (D)

// Perform N training iterations of policy & discriminator updating
forzinl... N do

Compute rewards {r; = —log(1 — Dy (2¢,¢I)) }em1. 19

Update ¢ (e.g. by TRPO)

// Perform M discriminator updates steps

for jinl... M do
€)= 3oy o l0g(1 — D(28,¢f)) — 5,y ra log(Do( 28, )
Update ¢ by a gradient method w.r.t. £(¢)

Return: «




Pipeline

Train low-level behavioral policy to Train high-level task policy by RL using
match motion capture feature distribution lower-level behaviors
, Prioprioceptive observations Exteroceptive 4~ T
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Figure 1: Overview of our approach: (Left) First train specific skills into low-level controller (LLC)
policies by imitation learning from motion capture data. (Right) Train a high-level controller (HLC)
by RL to reuse pre-trained LLCs.
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Conclusions and Prospects

MERLIN model can solve quite sophisticated tasks from raw sensory data in partially observed
environments.

Perception and memory formation are guided by a process of predictive modeling and
compression, less by trial and error task success.

* 200 dimensional z captures relevant features from approximately 1074 sensory dimensions.
Lessens the need for end-to-end gradient computation.

e MERLIN uses a temporal credit assignment window of 1.3 seconds to solve memory tasks of
6 minutes.

Can make use of information acquired without associated reward, exhibiting properties of latent
learning.

Provides a conceptual but functional model of the interaction of multiple neural systems in a
complete, goal-directed cognitive architecture.

GAIL can be scaled up to do imitation learning of non-obvious objectives.



Noticed This

e Btw, sounds relevant: NEURAL SKETCH LEARNING FOR
CONDITIONAL PROGRAM GENERATION (Murali et al.,
2018)
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Ext. Video 5 for Unsupervised
Predictive Memory in a Goal-Directed
Agent




unsupervised learning / compressing sensory data
state variables — prior and posterior; instantiation in memory model
variational autoencoder framework
problem with pure unsupervised learning: bullet problem (gluck and myers)

scaling to challenging rl problems — typically use truncated backpropagation through
time

Knock on benefit: can cut backpropagation time scales

figures: back matter learning curves for navigation tasks, one step prediction, unroll
length ext. fig 10



