
Table of Contents:

Architecture Overview
ConvNet Layers

Convolutional Layer
Pooling Layer
Normalization Layer
Fully-Connected Layer
Converting Fully-Connected Layers to Convolutional Layers

ConvNet Architectures
Layer Patterns
Layer Sizing Patterns
Case Studies (LeNet / AlexNet / ZFNet / GoogLeNet / VGGNet)
Computational Considerations

Additional References

Convolutional Neural Networks (CNNs / ConvNets)
Convolutional Neural Networks are very similar to ordinary Neural Networks from the previous
chapter: they are made up of neurons that have learnable weights and biases. Each neuron
receives some inputs, performs a dot product and optionally follows it with a non-linearity. The
whole network still expresses a single differentiable score function: from the raw image pixels on
one end to class scores at the other. And they still have a loss function (e.g. SVM/Softmax) on the
last (fully-connected) layer and all the tips/tricks we developed for learning regular Neural
Networks still apply.

So what does change? ConvNet architectures make the explicit assumption that the inputs are
images, which allows us to encode certain properties into the architecture. These then make the
forward function more e�cient to implement and vastly reduce the amount of parameters in the
network.

Architecture Overview

CS231n Convolutional Neural Networks for Visual Recognition

http://cs231n.github.io/

Recall: Regular Neural Nets. As we saw in the previous chapter, Neural Networks receive an input
(a single vector), and transform it through a series of hidden layers. Each hidden layer is made up
of a set of neurons, where each neuron is fully connected to all neurons in the previous layer, and
where neurons in a single layer function completely independently and do not share any
connections. The last fully-connected layer is called the “output layer” and in classi�cation
settings it represents the class scores.

Regular Neural Nets don’t scale well to full images. In CIFAR-10, images are only of size 32x32x3
(32 wide, 32 high, 3 color channels), so a single fully-connected neuron in a �rst hidden layer of a
regular Neural Network would have 32*32*3 = 3072 weights. This amount still seems
manageable, but clearly this fully-connected structure does not scale to larger images. For
example, an image of more respectable size, e.g. 200x200x3, would lead to neurons that have
200*200*3 = 120,000 weights. Moreover, we would almost certainly want to have several such
neurons, so the parameters would add up quickly! Clearly, this full connectivity is wasteful and the
huge number of parameters would quickly lead to over�tting.

3D volumes of neurons. Convolutional Neural Networks take advantage of the fact that the input
consists of images and they constrain the architecture in a more sensible way. In particular, unlike
a regular Neural Network, the layers of a ConvNet have neurons arranged in 3 dimensions: width,
height, depth. (Note that the word depth here refers to the third dimension of an activation
volume, not to the depth of a full Neural Network, which can refer to the total number of layers in a
network.) For example, the input images in CIFAR-10 are an input volume of activations, and the
volume has dimensions 32x32x3 (width, height, depth respectively). As we will soon see, the
neurons in a layer will only be connected to a small region of the layer before it, instead of all of
the neurons in a fully-connected manner. Moreover, the �nal output layer would for CIFAR-10 have
dimensions 1x1x10, because by the end of the ConvNet architecture we will reduce the full image
into a single vector of class scores, arranged along the depth dimension. Here is a visualization:

Left: A regular 3-layer Neural Network. Right: A ConvNet arranges its neurons in three dimensions (width,
height, depth), as visualized in one of the layers. Every layer of a ConvNet transforms the 3D input volume to
a 3D output volume of neuron activations. In this example, the red input layer holds the image, so its width
and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels).

Layers used to build ConvNets
As we described above, a simple ConvNet is a sequence of layers, and every layer of a ConvNet
transforms one volume of activations to another through a differentiable function. We use three
main types of layers to build ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-
Connected Layer (exactly as seen in regular Neural Networks). We will stack these layers to form
a full ConvNet architecture.

Example Architecture: Overview. We will go into more details below, but a simple ConvNet for
CIFAR-10 classi�cation could have the architecture [INPUT - CONV - RELU - POOL - FC]. In more
detail:

INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width
32, height 32, and with three color channels R,G,B.
CONV layer will compute the output of neurons that are connected to local regions in the
input, each computing a dot product between their weights and a small region they are
connected to in the input volume. This may result in volume such as [32x32x12] if we
decided to use 12 �lters.
RELU layer will apply an elementwise activation function, such as the
thresholding at zero. This leaves the size of the volume unchanged ([32x32x12]).
POOL layer will perform a downsampling operation along the spatial dimensions (width,
height), resulting in volume such as [16x16x12].
FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size
[1x1x10], where each of the 10 numbers correspond to a class score, such as among the 10
categories of CIFAR-10. As with ordinary Neural Networks and as the name implies, each
neuron in this layer will be connected to all the numbers in the previous volume.

In this way, ConvNets transform the original image layer by layer from the original pixel values to
the �nal class scores. Note that some layers contain parameters and other don’t. In particular, the
CONV/FC layers perform transformations that are a function of not only the activations in the
input volume, but also of the parameters (the weights and biases of the neurons). On the other
hand, the RELU/POOL layers will implement a �xed function. The parameters in the CONV/FC
layers will be trained with gradient descent so that the class scores that the ConvNet computes
are consistent with the labels in the training set for each image.

In summary:

A ConvNet is made up of Layers. Every Layer has a simple API: It transforms an input 3D volume
to an output 3D volume with some differentiable function that may or may not have parameters.

max(0, x)

A ConvNet architecture is in the simplest case a list of Layers that transform the image
volume into an output volume (e.g. holding the class scores)
There are a few distinct types of Layers (e.g. CONV/FC/RELU/POOL are by far the most
popular)
Each Layer accepts an input 3D volume and transforms it to an output 3D volume through a
differentiable function
Each Layer may or may not have parameters (e.g. CONV/FC do, RELU/POOL don’t)
Each Layer may or may not have additional hyperparameters (e.g. CONV/FC/POOL do,
RELU doesn’t)

The activations of an example ConvNet architecture. The initial volume stores the raw image pixels (left) and
the last volume stores the class scores (right). Each volume of activations along the processing path is
shown as a column. Since it's di�cult to visualize 3D volumes, we lay out each volume's slices in rows. The
last layer volume holds the scores for each class, but here we only visualize the sorted top 5 scores, and
print the labels of each one. The full web-based demo is shown in the header of our website. The
architecture shown here is a tiny VGG Net, which we will discuss later.

We now describe the individual layers and the details of their hyperparameters and their
connectivities.

Convolutional Layer

The Conv layer is the core building block of a Convolutional Network that does most of the
computational heavy lifting.

http://cs231n.stanford.edu/

Overview and intuition without brain stuff. Lets �rst discuss what the CONV layer computes
without brain/neuron analogies. The CONV layer’s parameters consist of a set of learnable �lters.
Every �lter is small spatially (along width and height), but extends through the full depth of the
input volume. For example, a typical �lter on a �rst layer of a ConvNet might have size 5x5x3 (i.e.
5 pixels width and height, and 3 because images have depth 3, the color channels). During the
forward pass, we slide (more precisely, convolve) each �lter across the width and height of the
input volume and compute dot products between the entries of the �lter and the input at any
position. As we slide the �lter over the width and height of the input volume we will produce a 2-
dimensional activation map that gives the responses of that �lter at every spatial position.
Intuitively, the network will learn �lters that activate when they see some type of visual feature
such as an edge of some orientation or a blotch of some color on the �rst layer, or eventually
entire honeycomb or wheel-like patterns on higher layers of the network. Now, we will have an
entire set of �lters in each CONV layer (e.g. 12 �lters), and each of them will produce a separate 2-
dimensional activation map. We will stack these activation maps along the depth dimension and
produce the output volume.

The brain view. If you’re a fan of the brain/neuron analogies, every entry in the 3D output volume
can also be interpreted as an output of a neuron that looks at only a small region in the input and
shares parameters with all neurons to the left and right spatially (since these numbers all result
from applying the same �lter). We now discuss the details of the neuron connectivities, their
arrangement in space, and their parameter sharing scheme.

Local Connectivity. When dealing with high-dimensional inputs such as images, as we saw above
it is impractical to connect neurons to all neurons in the previous volume. Instead, we will connect
each neuron to only a local region of the input volume. The spatial extent of this connectivity is a
hyperparameter called the receptive �eld of the neuron (equivalently this is the �lter size). The
extent of the connectivity along the depth axis is always equal to the depth of the input volume. It
is important to emphasize again this asymmetry in how we treat the spatial dimensions (width
and height) and the depth dimension: The connections are local in space (along width and height),
but always full along the entire depth of the input volume.

Example 1. For example, suppose that the input volume has size [32x32x3], (e.g. an RGB CIFAR-10
image). If the receptive �eld (or the �lter size) is 5x5, then each neuron in the Conv Layer will have
weights to a [5x5x3] region in the input volume, for a total of 5*5*3 = 75 weights (and +1 bias
parameter). Notice that the extent of the connectivity along the depth axis must be 3, since this is
the depth of the input volume.

Example 2. Suppose an input volume had size [16x16x20]. Then using an example receptive �eld
size of 3x3, every neuron in the Conv Layer would now have a total of 3*3*20 = 180 connections
to the input volume. Notice that, again, the connectivity is local in space (e.g. 3x3), but full along
the input depth (20).

Left: An example input volume in red (e.g. a 32x32x3 CIFAR-10 image), and an example volume of neurons in
the �rst Convolutional layer. Each neuron in the convolutional layer is connected only to a local region in the
input volume spatially, but to the full depth (i.e. all color channels). Note, there are multiple neurons (5 in this
example) along the depth, all looking at the same region in the input - see discussion of depth columns in
text below. Right: The neurons from the Neural Network chapter remain unchanged: They still compute a dot
product of their weights with the input followed by a non-linearity, but their connectivity is now restricted to
be local spatially.

Spatial arrangement. We have explained the connectivity of each neuron in the Conv Layer to the
input volume, but we haven’t yet discussed how many neurons there are in the output volume or
how they are arranged. Three hyperparameters control the size of the output volume: the depth,
stride and zero-padding. We discuss these next:

1. First, the depth of the output volume is a hyperparameter: it corresponds to the number of
�lters we would like to use, each learning to look for something different in the input. For
example, if the �rst Convolutional Layer takes as input the raw image, then different neurons
along the depth dimension may activate in presence of various oriented edges, or blobs of
color. We will refer to a set of neurons that are all looking at the same region of the input as
a depth column (some people also prefer the term �bre).

2. Second, we must specify the stride with which we slide the �lter. When the stride is 1 then
we move the �lters one pixel at a time. When the stride is 2 (or uncommonly 3 or more,
though this is rare in practice) then the �lters jump 2 pixels at a time as we slide them
around. This will produce smaller output volumes spatially.

3. As we will soon see, sometimes it will be convenient to pad the input volume with zeros
around the border. The size of this zero-padding is a hyperparameter. The nice feature of
zero padding is that it will allow us to control the spatial size of the output volumes (most
commonly as we’ll see soon we will use it to exactly preserve the spatial size of the input
volume so the input and output width and height are the same).

We can compute the spatial size of the output volume as a function of the input volume size (),
the receptive �eld size of the Conv Layer neurons (), the stride with which they are applied (),
and the amount of zero padding used () on the border. You can convince yourself that the

W

F S

P

correct formula for calculating how many neurons “�t” is given by . For
example for a 7x7 input and a 3x3 �lter with stride 1 and pad 0 we would get a 5x5 output. With
stride 2 we would get a 3x3 output. Lets also see one more graphical example:

Illustration of spatial arrangement. In this example there is only one spatial dimension (x-axis), one neuron
with a receptive �eld size of F = 3, the input size is W = 5, and there is zero padding of P = 1. Left: The neuron
strided across the input in stride of S = 1, giving output of size (5 - 3 + 2)/1+1 = 5. Right: The neuron uses
stride of S = 2, giving output of size (5 - 3 + 2)/2+1 = 3. Notice that stride S = 3 could not be used since it
wouldn't �t neatly across the volume. In terms of the equation, this can be determined since (5 - 3 + 2) = 4 is
not divisible by 3.
The neuron weights are in this example [1,0,-1] (shown on very right), and its bias is zero. These weights are
shared across all yellow neurons (see parameter sharing below).

Use of zero-padding. In the example above on left, note that the input dimension was 5 and the
output dimension was equal: also 5. This worked out so because our receptive �elds were 3 and
we used zero padding of 1. If there was no zero-padding used, then the output volume would have
had spatial dimension of only 3, because that it is how many neurons would have “�t” across the
original input. In general, setting zero padding to be when the stride is
ensures that the input volume and output volume will have the same size spatially. It is very
common to use zero-padding in this way and we will discuss the full reasons when we talk more
about ConvNet architectures.

Constraints on strides. Note again that the spatial arrangement hyperparameters have mutual
constraints. For example, when the input has size , no zero-padding is used , and
the �lter size is , then it would be impossible to use stride , since

, i.e. not an integer, indicating that the
neurons don’t “�t” neatly and symmetrically across the input. Therefore, this setting of the
hyperparameters is considered to be invalid, and a ConvNet library could throw an exception or
zero pad the rest to make it �t, or crop the input to make it �t, or something. As we will see in the
ConvNet architectures section, sizing the ConvNets appropriately so that all the dimensions “work
out” can be a real headache, which the use of zero-padding and some design guidelines will
signi�cantly alleviate.

Real-world example. The Krizhevsky et al. architecture that won the ImageNet challenge in 2012
accepted images of size [227x227x3]. On the �rst Convolutional Layer, it used neurons with

(W − F + 2P)/S + 1

P = (F − 1)/2 S = 1

W = 10 P = 0

F = 3 S = 2

(W − F + 2P)/S + 1 = (10 − 3 + 0)/2 + 1 = 4.5

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

receptive �eld size , stride and no zero padding . Since (227 - 11)/4 + 1 = 55,
and since the Conv layer had a depth of , the Conv layer output volume had size
[55x55x96]. Each of the 55*55*96 neurons in this volume was connected to a region of size
[11x11x3] in the input volume. Moreover, all 96 neurons in each depth column are connected to
the same [11x11x3] region of the input, but of course with different weights. As a fun aside, if you
read the actual paper it claims that the input images were 224x224, which is surely incorrect
because (224 - 11)/4 + 1 is quite clearly not an integer. This has confused many people in the
history of ConvNets and little is known about what happened. My own best guess is that Alex
used zero-padding of 3 extra pixels that he does not mention in the paper.

Parameter Sharing. Parameter sharing scheme is used in Convolutional Layers to control the
number of parameters. Using the real-world example above, we see that there are 55*55*96 =
290,400 neurons in the �rst Conv Layer, and each has 11*11*3 = 363 weights and 1 bias.
Together, this adds up to 290400 * 364 = 105,705,600 parameters on the �rst layer of the ConvNet
alone. Clearly, this number is very high.

It turns out that we can dramatically reduce the number of parameters by making one reasonable
assumption: That if one feature is useful to compute at some spatial position (x,y), then it should
also be useful to compute at a different position (x2,y2). In other words, denoting a single 2-
dimensional slice of depth as a depth slice (e.g. a volume of size [55x55x96] has 96 depth slices,
each of size [55x55]), we are going to constrain the neurons in each depth slice to use the same
weights and bias. With this parameter sharing scheme, the �rst Conv Layer in our example would
now have only 96 unique set of weights (one for each depth slice), for a total of 96*11*11*3 =
34,848 unique weights, or 34,944 parameters (+96 biases). Alternatively, all 55*55 neurons in each
depth slice will now be using the same parameters. In practice during backpropagation, every
neuron in the volume will compute the gradient for its weights, but these gradients will be added
up across each depth slice and only update a single set of weights per slice.

Notice that if all neurons in a single depth slice are using the same weight vector, then the forward
pass of the CONV layer can in each depth slice be computed as a convolution of the neuron’s
weights with the input volume (Hence the name: Convolutional Layer). This is why it is common to
refer to the sets of weights as a �lter (or a kernel), that is convolved with the input.

F = 11 S = 4 P = 0

K = 96

Example �lters learned by Krizhevsky et al. Each of the 96 �lters shown here is of size [11x11x3], and each
one is shared by the 55*55 neurons in one depth slice. Notice that the parameter sharing assumption is
relatively reasonable: If detecting a horizontal edge is important at some location in the image, it should
intuitively be useful at some other location as well due to the translationally-invariant structure of images.
There is therefore no need to relearn to detect a horizontal edge at every one of the 55*55 distinct locations
in the Conv layer output volume.

Note that sometimes the parameter sharing assumption may not make sense. This is especially
the case when the input images to a ConvNet have some speci�c centered structure, where we
should expect, for example, that completely different features should be learned on one side of
the image than another. One practical example is when the input are faces that have been
centered in the image. You might expect that different eye-speci�c or hair-speci�c features could
(and should) be learned in different spatial locations. In that case it is common to relax the
parameter sharing scheme, and instead simply call the layer a Locally-Connected Layer.

Numpy examples. To make the discussion above more concrete, lets express the same ideas but
in code and with a speci�c example. Suppose that the input volume is a numpy array X . Then:

A depth column (or a �bre) at position (x,y) would be the activations X[x,y,:] .
A depth slice, or equivalently an activation map at depth d would be the activations
X[:,:,d] .

Conv Layer Example. Suppose that the input volume X has shape X.shape: (11,11,4) .
Suppose further that we use no zero padding (), that the �lter size is , and that the
stride is . The output volume would therefore have spatial size (11-5)/2+1 = 4, giving a
volume with width and height of 4. The activation map in the output volume (call it V), would
then look as follows (only some of the elements are computed in this example):

V[0,0,0] = np.sum(X[:5,:5,:] * W0) + b0

V[1,0,0] = np.sum(X[2:7,:5,:] * W0) + b0

P = 0 F = 5

S = 2

V[2,0,0] = np.sum(X[4:9,:5,:] * W0) + b0

V[3,0,0] = np.sum(X[6:11,:5,:] * W0) + b0

Remember that in numpy, the operation * above denotes elementwise multiplication between
the arrays. Notice also that the weight vector W0 is the weight vector of that neuron and b0 is
the bias. Here, W0 is assumed to be of shape W0.shape: (5,5,4) , since the �lter size is 5
and the depth of the input volume is 4. Notice that at each point, we are computing the dot
product as seen before in ordinary neural networks. Also, we see that we are using the same
weight and bias (due to parameter sharing), and where the dimensions along the width are
increasing in steps of 2 (i.e. the stride). To construct a second activation map in the output
volume, we would have:

V[0,0,1] = np.sum(X[:5,:5,:] * W1) + b1

V[1,0,1] = np.sum(X[2:7,:5,:] * W1) + b1

V[2,0,1] = np.sum(X[4:9,:5,:] * W1) + b1

V[3,0,1] = np.sum(X[6:11,:5,:] * W1) + b1

V[0,1,1] = np.sum(X[:5,2:7,:] * W1) + b1 (example of going along y)
V[2,3,1] = np.sum(X[4:9,6:11,:] * W1) + b1 (or along both)

where we see that we are indexing into the second depth dimension in V (at index 1) because
we are computing the second activation map, and that a different set of parameters (W1) is now
used. In the example above, we are for brevity leaving out some of the other operations the Conv
Layer would perform to �ll the other parts of the output array V . Additionally, recall that these
activation maps are often followed elementwise through an activation function such as ReLU, but
this is not shown here.

Summary. To summarize, the Conv Layer:

Accepts a volume of size
Requires four hyperparameters:

Number of �lters ,
their spatial extent ,
the stride ,
the amount of zero padding .

Produces a volume of size where:

 (i.e. width and height are computed equally by
symmetry)

With parameter sharing, it introduces weights per �lter, for a total of
 weights and biases.

× ×W1 H1 D1

K

F

S

P

× ×W2 H2 D2

= (− F + 2P)/S + 1W2 W1

= (− F + 2P)/S + 1H2 H1

= KD2

F ⋅ F ⋅ D1

(F ⋅ F ⋅) ⋅ KD1 K

In the output volume, the -th depth slice (of size) is the result of performing a
valid convolution of the -th �lter over the input volume with a stride of , and then offset by

-th bias.

A common setting of the hyperparameters is . However, there are common
conventions and rules of thumb that motivate these hyperparameters. See the ConvNet
architectures section below.

Convolution Demo. Below is a running demo of a CONV layer. Since 3D volumes are hard to
visualize, all the volumes (the input volume (in blue), the weight volumes (in red), the output
volume (in green)) are visualized with each depth slice stacked in rows. The input volume is of
size , and the CONV layer parameters are

. That is, we have two �lters of size , and they are applied
with a stride of 2. Therefore, the output volume size has spatial size (5 - 3 + 2)/2 + 1 = 3. Moreover,
notice that a padding of is applied to the input volume, making the outer border of the
input volume zero. The visualization below iterates over the output activations (green), and shows
that each element is computed by elementwise multiplying the highlighted input (blue) with the
�lter (red), summing it up, and then offsetting the result by the bias.

d ×W2 H2

d S

d

F = 3, S = 1, P = 1

= 5, = 5, = 3W1 H1 D1

K = 2, F = 3, S = 2, P = 1 3 × 3

P = 1

Input Volume (+pad 1) (7x7x3)
x[:,:,0]
0

0

0

0

0

0

0

0

0

0

1

0

2

0

0

0

2

0

1

0

0

0

0

2

2

2

0

0

0

1

0

0

1

2

0

0

2

2

0

2

0

0

0

0

0

0

0

0

0

x[:,:,1]
0

0

0

0

0

0

0

0

1

0

2

2

0

0

0

1

1

2

1

0

0

0

1

2

1

2

1

0

0

1

2

0

1

2

0

0

2

1

1

0

0

0

0

0

0

0

0

0

0

x[:,:,2]
0

0

0

0

0

0

0

0

0

1

1

2

1

0

0

2

1

2

2

0

0

0

2

1

2

2

0

0

0

2

2

2

0

1

0

0

2

0

0

1

2

0

0

0

0

0

0

0

0

Filter W0 (3x3x3)
w0[:,:,0]
-1

0

-1

0

1

1

0

-1

0

w0[:,:,1]
0

0

-1

1

0

0

0

-1

0

w0[:,:,2]
-1

0

1

0

1

-1

1

-1

-1

Bias b0 (1x1x1)
b0[:,:,0]
1

Filter W1 (3x3x3)
w1[:,:,0]
1

-1

0

1

0

-1

-1

-1

-1

w1[:,:,1]
-1

0

0

-1

0

1

0

-1

1

w1[:,:,2]
0

1

0

1

0

1

-1

1

0

Bias b1 (1x1x1)
b1[:,:,0]
0

Output Volu
o[:,:,0]
-4

-4

8

-4

4

-5

7

-1

2

o[:,:,1]
1

2

-3

5

6

-2

0

0

2

toggle movement

Implementation as Matrix Multiplication. Note that the convolution operation essentially
performs dot products between the �lters and local regions of the input. A common
implementation pattern of the CONV layer is to take advantage of this fact and formulate the
forward pass of a convolutional layer as one big matrix multiply as follows:

1. The local regions in the input image are stretched out into columns in an operation
commonly called im2col. For example, if the input is [227x227x3] and it is to be convolved
with 11x11x3 �lters at stride 4, then we would take [11x11x3] blocks of pixels in the input
and stretch each block into a column vector of size 11*11*3 = 363. Iterating this process in

the input at stride of 4 gives (227-11)/4+1 = 55 locations along both width and height,
leading to an output matrix X_col of im2col of size [363 x 3025], where every column is a
stretched out receptive �eld and there are 55*55 = 3025 of them in total. Note that since the
receptive �elds overlap, every number in the input volume may be duplicated in multiple
distinct columns.

2. The weights of the CONV layer are similarly stretched out into rows. For example, if there
are 96 �lters of size [11x11x3] this would give a matrix W_row of size [96 x 363].

3. The result of a convolution is now equivalent to performing one large matrix multiply
np.dot(W_row, X_col) , which evaluates the dot product between every �lter and every

receptive �eld location. In our example, the output of this operation would be [96 x 3025],
giving the output of the dot product of each �lter at each location.

4. The result must �nally be reshaped back to its proper output dimension [55x55x96].

This approach has the downside that it can use a lot of memory, since some values in the input
volume are replicated multiple times in X_col . However, the bene�t is that there are many very
e�cient implementations of Matrix Multiplication that we can take advantage of (for example, in
the commonly used BLAS API). Moreover, the same im2col idea can be reused to perform the
pooling operation, which we discuss next.

Backpropagation. The backward pass for a convolution operation (for both the data and the
weights) is also a convolution (but with spatially-�ipped �lters). This is easy to derive in the 1-
dimensional case with a toy example (not expanded on for now).

1x1 convolution. As an aside, several papers use 1x1 convolutions, as �rst investigated by
Network in Network. Some people are at �rst confused to see 1x1 convolutions especially when
they come from signal processing background. Normally signals are 2-dimensional so 1x1
convolutions do not make sense (it’s just pointwise scaling). However, in ConvNets this is not the
case because one must remember that we operate over 3-dimensional volumes, and that the
�lters always extend through the full depth of the input volume. For example, if the input is
[32x32x3] then doing 1x1 convolutions would effectively be doing 3-dimensional dot products
(since the input depth is 3 channels).

Dilated convolutions. A recent development (e.g. see paper by Fisher Yu and Vladlen Koltun) is to
introduce one more hyperparameter to the CONV layer called the dilation. So far we’ve only
discussed CONV �lters that are contiguous. However, it’s possible to have �lters that have spaces
between each cell, called dilation. As an example, in one dimension a �lter w of size 3 would
compute over input x the following: w[0]*x[0] + w[1]*x[1] + w[2]*x[2] . This is dilation
of 0. For dilation 1 the �lter would instead compute w[0]*x[0] + w[1]*x[2] + w[2]*x[4] ;
In other words there is a gap of 1 between the applications. This can be very useful in some
settings to use in conjunction with 0-dilated �lters because it allows you to merge spatial
information across the inputs much more agressively with fewer layers. For example, if you stack

http://www.netlib.org/blas/
http://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1511.07122

two 3x3 CONV layers on top of each other then you can convince yourself that the neurons on the
2nd layer are a function of a 5x5 patch of the input (we would say that the effective receptive �eld
of these neurons is 5x5). If we use dilated convolutions then this effective receptive �eld would
grow much quicker.

Pooling Layer

It is common to periodically insert a Pooling layer in-between successive Conv layers in a
ConvNet architecture. Its function is to progressively reduce the spatial size of the representation
to reduce the amount of parameters and computation in the network, and hence to also control
over�tting. The Pooling Layer operates independently on every depth slice of the input and resizes
it spatially, using the MAX operation. The most common form is a pooling layer with �lters of size
2x2 applied with a stride of 2 downsamples every depth slice in the input by 2 along both width
and height, discarding 75% of the activations. Every MAX operation would in this case be taking a
max over 4 numbers (little 2x2 region in some depth slice). The depth dimension remains
unchanged. More generally, the pooling layer:

Accepts a volume of size
Requires two hyperparameters:

their spatial extent ,
the stride ,

Produces a volume of size where:

Introduces zero parameters since it computes a �xed function of the input
Note that it is not common to use zero-padding for Pooling layers

It is worth noting that there are only two commonly seen variations of the max pooling layer found
in practice: A pooling layer with (also called overlapping pooling), and more
commonly . Pooling sizes with larger receptive �elds are too destructive.

General pooling. In addition to max pooling, the pooling units can also perform other functions,
such as average pooling or even L2-norm pooling. Average pooling was often used historically but
has recently fallen out of favor compared to the max pooling operation, which has been shown to
work better in practice.

× ×W1 H1 D1

F

S

× ×W2 H2 D2

= (− F)/S + 1W2 W1

= (− F)/S + 1H2 H1

=D2 D1

F = 3, S = 2

F = 2, S = 2

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left:
In this example, the input volume of size [224x224x64] is pooled with �lter size 2, stride 2 into output volume
of size [112x112x64]. Notice that the volume depth is preserved. Right: The most common downsampling
operation is max, giving rise to max pooling, here shown with a stride of 2. That is, each max is taken over 4
numbers (little 2x2 square).

Backpropagation. Recall from the backpropagation chapter that the backward pass for a max(x,
y) operation has a simple interpretation as only routing the gradient to the input that had the
highest value in the forward pass. Hence, during the forward pass of a pooling layer it is common
to keep track of the index of the max activation (sometimes also called the switches) so that
gradient routing is e�cient during backpropagation.

Getting rid of pooling. Many people dislike the pooling operation and think that we can get away
without it. For example, Striving for Simplicity: The All Convolutional Net proposes to discard the
pooling layer in favor of architecture that only consists of repeated CONV layers. To reduce the
size of the representation they suggest using larger stride in CONV layer once in a while.
Discarding pooling layers has also been found to be important in training good generative models,
such as variational autoencoders (VAEs) or generative adversarial networks (GANs). It seems
likely that future architectures will feature very few to no pooling layers.

Normalization Layer

Many types of normalization layers have been proposed for use in ConvNet architectures,
sometimes with the intentions of implementing inhibition schemes observed in the biological
brain. However, these layers have since fallen out of favor because in practice their contribution
has been shown to be minimal, if any. For various types of normalizations, see the discussion in
Alex Krizhevsky’s cuda-convnet library API.

Fully-connected layer

http://arxiv.org/abs/1412.6806
http://code.google.com/p/cuda-convnet/wiki/LayerParams#Local_response_normalization_layer_(same_map)

Neurons in a fully connected layer have full connections to all activations in the previous layer, as
seen in regular Neural Networks. Their activations can hence be computed with a matrix
multiplication followed by a bias offset. See the Neural Network section of the notes for more
information.

Converting FC layers to CONV layers

It is worth noting that the only difference between FC and CONV layers is that the neurons in the
CONV layer are connected only to a local region in the input, and that many of the neurons in a
CONV volume share parameters. However, the neurons in both layers still compute dot products,
so their functional form is identical. Therefore, it turns out that it’s possible to convert between FC
and CONV layers:

For any CONV layer there is an FC layer that implements the same forward function. The
weight matrix would be a large matrix that is mostly zero except for at certain blocks (due to
local connectivity) where the weights in many of the blocks are equal (due to parameter
sharing).
Conversely, any FC layer can be converted to a CONV layer. For example, an FC layer with

 that is looking at some input volume of size can be equivalently
expressed as a CONV layer with . In other words, we are
setting the �lter size to be exactly the size of the input volume, and hence the output will
simply be since only a single depth column “�ts” across the input volume,
giving identical result as the initial FC layer.

FC->CONV conversion. Of these two conversions, the ability to convert an FC layer to a CONV
layer is particularly useful in practice. Consider a ConvNet architecture that takes a 224x224x3
image, and then uses a series of CONV layers and POOL layers to reduce the image to an
activations volume of size 7x7x512 (in an AlexNet architecture that we’ll see later, this is done by
use of 5 pooling layers that downsample the input spatially by a factor of two each time, making
the �nal spatial size 224/2/2/2/2/2 = 7). From there, an AlexNet uses two FC layers of size 4096
and �nally the last FC layers with 1000 neurons that compute the class scores. We can convert
each of these three FC layers to CONV layers as described above:

Replace the �rst FC layer that looks at [7x7x512] volume with a CONV layer that uses �lter
size , giving output volume [1x1x4096].
Replace the second FC layer with a CONV layer that uses �lter size , giving output
volume [1x1x4096]
Replace the last FC layer similarly, with , giving �nal output [1x1x1000]

Each of these conversions could in practice involve manipulating (e.g. reshaping) the weight
matrix in each FC layer into CONV layer �lters. It turns out that this conversion allows us to

K = 4096 7 × 7 × 512

F = 7, P = 0, S = 1, K = 4096

1 × 1 × 4096

F = 7

F = 1

F = 1

W

“slide” the original ConvNet very e�ciently across many spatial positions in a larger image, in a
single forward pass.

For example, if 224x224 image gives a volume of size [7x7x512] - i.e. a reduction by 32, then
forwarding an image of size 384x384 through the converted architecture would give the
equivalent volume in size [12x12x512], since 384/32 = 12. Following through with the next 3
CONV layers that we just converted from FC layers would now give the �nal volume of size
[6x6x1000], since (12 - 7)/1 + 1 = 6. Note that instead of a single vector of class scores of size
[1x1x1000], we’re now getting an entire 6x6 array of class scores across the 384x384 image.

Naturally, forwarding the converted ConvNet a single time is much more e�cient than iterating
the original ConvNet over all those 36 locations, since the 36 evaluations share computation. This
trick is often used in practice to get better performance, where for example, it is common to resize
an image to make it bigger, use a converted ConvNet to evaluate the class scores at many spatial
positions and then average the class scores.

Lastly, what if we wanted to e�ciently apply the original ConvNet over the image but at a stride
smaller than 32 pixels? We could achieve this with multiple forward passes. For example, note
that if we wanted to use a stride of 16 pixels we could do so by combining the volumes received
by forwarding the converted ConvNet twice: First over the original image and second over the
image but with the image shifted spatially by 16 pixels along both width and height.

An IPython Notebook on Net Surgery shows how to perform the conversion in practice, in
code (using Caffe)

ConvNet Architectures
We have seen that Convolutional Networks are commonly made up of only three layer types:
CONV, POOL (we assume Max pool unless stated otherwise) and FC (short for fully-connected).
We will also explicitly write the RELU activation function as a layer, which applies elementwise
non-linearity. In this section we discuss how these are commonly stacked together to form entire
ConvNets.

Layer Patterns

Evaluating the original ConvNet (with FC layers) independently across 224x224 crops of the
384x384 image in strides of 32 pixels gives an identical result to forwarding the converted
ConvNet one time.

https://github.com/BVLC/caffe/blob/master/examples/net_surgery.ipynb

The most common form of a ConvNet architecture stacks a few CONV-RELU layers, follows them
with POOL layers, and repeats this pattern until the image has been merged spatially to a small
size. At some point, it is common to transition to fully-connected layers. The last fully-connected
layer holds the output, such as the class scores. In other words, the most common ConvNet
architecture follows the pattern:

INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC

where the * indicates repetition, and the POOL? indicates an optional pooling layer. Moreover,
N >= 0 (and usually N <= 3), M >= 0 , K >= 0 (and usually K < 3). For example, here

are some common ConvNet architectures you may see that follow this pattern:

INPUT -> FC , implements a linear classi�er. Here N = M = K = 0 .
INPUT -> CONV -> RELU -> FC

INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU -> FC . Here we see that
there is a single CONV layer between every POOL layer.
INPUT -> [CONV -> RELU -> CONV -> RELU -> POOL]*3 -> [FC -> RELU]*2 ->

FC Here we see two CONV layers stacked before every POOL layer. This is generally a good
idea for larger and deeper networks, because multiple stacked CONV layers can develop
more complex features of the input volume before the destructive pooling operation.

Prefer a stack of small �lter CONV to one large receptive �eld CONV layer. Suppose that you stack
three 3x3 CONV layers on top of each other (with non-linearities in between, of course). In this
arrangement, each neuron on the �rst CONV layer has a 3x3 view of the input volume. A neuron
on the second CONV layer has a 3x3 view of the �rst CONV layer, and hence by extension a 5x5
view of the input volume. Similarly, a neuron on the third CONV layer has a 3x3 view of the 2nd
CONV layer, and hence a 7x7 view of the input volume. Suppose that instead of these three layers
of 3x3 CONV, we only wanted to use a single CONV layer with 7x7 receptive �elds. These neurons
would have a receptive �eld size of the input volume that is identical in spatial extent (7x7), but
with several disadvantages. First, the neurons would be computing a linear function over the
input, while the three stacks of CONV layers contain non-linearities that make their features more
expressive. Second, if we suppose that all the volumes have channels, then it can be seen that
the single 7x7 CONV layer would contain parameters, while the three
3x3 CONV layers would only contain parameters. Intuitively,
stacking CONV layers with tiny �lters as opposed to having one CONV layer with big �lters allows
us to express more powerful features of the input, and with fewer parameters. As a practical
disadvantage, we might need more memory to hold all the intermediate CONV layer results if we
plan to do backpropagation.

Recent departures. It should be noted that the conventional paradigm of a linear list of layers has
recently been challenged, in Google’s Inception architectures and also in current (state of the art)

C

C × (7 × 7 × C) = 49C2

3 × (C × (3 × 3 × C)) = 27C2

Residual Networks from Microsoft Research Asia. Both of these (see details below in case studies
section) feature more intricate and different connectivity structures.

In practice: use whatever works best on ImageNet. If you’re feeling a bit of a fatigue in thinking
about the architectural decisions, you’ll be pleased to know that in 90% or more of applications
you should not have to worry about these. I like to summarize this point as “don’t be a hero”:
Instead of rolling your own architecture for a problem, you should look at whatever architecture
currently works best on ImageNet, download a pretrained model and �netune it on your data. You
should rarely ever have to train a ConvNet from scratch or design one from scratch. I also made
this point at the Deep Learning school.

Layer Sizing Patterns

Until now we’ve omitted mentions of common hyperparameters used in each of the layers in a
ConvNet. We will �rst state the common rules of thumb for sizing the architectures and then
follow the rules with a discussion of the notation:

The input layer (that contains the image) should be divisible by 2 many times. Common numbers
include 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. common ImageNet ConvNets), 384,
and 512.

The conv layers should be using small �lters (e.g. 3x3 or at most 5x5), using a stride of ,
and crucially, padding the input volume with zeros in such way that the conv layer does not alter
the spatial dimensions of the input. That is, when , then using will retain the original
size of the input. When , . For a general , it can be seen that
preserves the input size. If you must use bigger �lter sizes (such as 7x7 or so), it is only common
to see this on the very �rst conv layer that is looking at the input image.

The pool layers are in charge of downsampling the spatial dimensions of the input. The most
common setting is to use max-pooling with 2x2 receptive �elds (i.e.), and with a stride of 2
(i.e.). Note that this discards exactly 75% of the activations in an input volume (due to
downsampling by 2 in both width and height). Another slightly less common setting is to use 3x3
receptive �elds with a stride of 2, but this makes. It is very uncommon to see receptive �eld sizes
for max pooling that are larger than 3 because the pooling is then too lossy and aggressive. This
usually leads to worse performance.

Reducing sizing headaches. The scheme presented above is pleasing because all the CONV
layers preserve the spatial size of their input, while the POOL layers alone are in charge of down-
sampling the volumes spatially. In an alternative scheme where we use strides greater than 1 or
don’t zero-pad the input in CONV layers, we would have to very carefully keep track of the input

S = 1

F = 3 P = 1

F = 5 P = 2 F P = (F − 1)/2

F = 2

S = 2

https://www.youtube.com/watch?v=u6aEYuemt0M

volumes throughout the CNN architecture and make sure that all strides and �lters “work out”, and
that the ConvNet architecture is nicely and symmetrically wired.

Why use stride of 1 in CONV? Smaller strides work better in practice. Additionally, as already
mentioned stride 1 allows us to leave all spatial down-sampling to the POOL layers, with the CONV
layers only transforming the input volume depth-wise.

Why use padding? In addition to the aforementioned bene�t of keeping the spatial sizes constant
after CONV, doing this actually improves performance. If the CONV layers were to not zero-pad the
inputs and only perform valid convolutions, then the size of the volumes would reduce by a small
amount after each CONV, and the information at the borders would be “washed away” too quickly.

Compromising based on memory constraints. In some cases (especially early in the ConvNet
architectures), the amount of memory can build up very quickly with the rules of thumb presented
above. For example, �ltering a 224x224x3 image with three 3x3 CONV layers with 64 �lters each
and padding 1 would create three activation volumes of size [224x224x64]. This amounts to a
total of about 10 million activations, or 72MB of memory (per image, for both activations and
gradients). Since GPUs are often bottlenecked by memory, it may be necessary to compromise. In
practice, people prefer to make the compromise at only the �rst CONV layer of the network. For
example, one compromise might be to use a �rst CONV layer with �lter sizes of 7x7 and stride of
2 (as seen in a ZF net). As another example, an AlexNet uses �lter sizes of 11x11 and stride of 4.

Case studies

There are several architectures in the �eld of Convolutional Networks that have a name. The most
common are:

LeNet. The �rst successful applications of Convolutional Networks were developed by Yann
LeCun in 1990’s. Of these, the best known is the LeNet architecture that was used to read
zip codes, digits, etc.
AlexNet. The �rst work that popularized Convolutional Networks in Computer Vision was
the AlexNet, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton. The AlexNet
was submitted to the ImageNet ILSVRC challenge in 2012 and signi�cantly outperformed
the second runner-up (top 5 error of 16% compared to runner-up with 26% error). The
Network had a very similar architecture to LeNet, but was deeper, bigger, and featured
Convolutional Layers stacked on top of each other (previously it was common to only have
a single CONV layer always immediately followed by a POOL layer).
ZF Net. The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler and
Rob Fergus. It became known as the ZFNet (short for Zeiler & Fergus Net). It was an
improvement on AlexNet by tweaking the architecture hyperparameters, in particular by

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://www.image-net.org/challenges/LSVRC/2014/
http://arxiv.org/abs/1311.2901

expanding the size of the middle convolutional layers and making the stride and �lter size
on the �rst layer smaller.
GoogLeNet. The ILSVRC 2014 winner was a Convolutional Network from Szegedy et al.
from Google. Its main contribution was the development of an Inception Module that
dramatically reduced the number of parameters in the network (4M, compared to AlexNet
with 60M). Additionally, this paper uses Average Pooling instead of Fully Connected layers
at the top of the ConvNet, eliminating a large amount of parameters that do not seem to
matter much. There are also several followup versions to the GoogLeNet, most recently
Inception-v4.
VGGNet. The runner-up in ILSVRC 2014 was the network from Karen Simonyan and Andrew
Zisserman that became known as the VGGNet. Its main contribution was in showing that
the depth of the network is a critical component for good performance. Their �nal best
network contains 16 CONV/FC layers and, appealingly, features an extremely homogeneous
architecture that only performs 3x3 convolutions and 2x2 pooling from the beginning to the
end. Their pretrained model is available for plug and play use in Caffe. A downside of the
VGGNet is that it is more expensive to evaluate and uses a lot more memory and
parameters (140M). Most of these parameters are in the �rst fully connected layer, and it
was since found that these FC layers can be removed with no performance downgrade,
signi�cantly reducing the number of necessary parameters.
ResNet. Residual Network developed by Kaiming He et al. was the winner of ILSVRC 2015.
It features special skip connections and a heavy use of batch normalization. The
architecture is also missing fully connected layers at the end of the network. The reader is
also referred to Kaiming’s presentation (video, slides), and some recent experiments that
reproduce these networks in Torch. ResNets are currently by far state of the art
Convolutional Neural Network models and are the default choice for using ConvNets in
practice (as of May 10, 2016). In particular, also see more recent developments that tweak
the original architecture from Kaiming He et al. Identity Mappings in Deep Residual
Networks (published March 2016).

VGGNet in detail. Lets break down the VGGNet in more detail as a case study. The whole VGGNet
is composed of CONV layers that perform 3x3 convolutions with stride 1 and pad 1, and of POOL
layers that perform 2x2 max pooling with stride 2 (and no padding). We can write out the size of
the representation at each step of the processing and keep track of both the representation size
and the total number of weights:

INPUT: [224x224x3] memory: 224*224*3=150K weights: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 =
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 =
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*1
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
https://www.youtube.com/watch?v=1PGLj-uKT1w
http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
https://github.com/gcr/torch-residual-networks
https://arxiv.org/abs/1603.05027
http://www.robots.ox.ac.uk/~vgg/research/very_deep/

As is common with Convolutional Networks, notice that most of the memory (and also compute
time) is used in the early CONV layers, and that most of the parameters are in the last FC layers. In
this particular case, the �rst FC layer contains 100M weights, out of a total of 140M.

Computational Considerations

The largest bottleneck to be aware of when constructing ConvNet architectures is the memory
bottleneck. Many modern GPUs have a limit of 3/4/6GB memory, with the best GPUs having
about 12GB of memory. There are three major sources of memory to keep track of:

From the intermediate volume sizes: These are the raw number of activations at every layer
of the ConvNet, and also their gradients (of equal size). Usually, most of the activations are
on the earlier layers of a ConvNet (i.e. �rst Conv Layers). These are kept around because
they are needed for backpropagation, but a clever implementation that runs a ConvNet only
at test time could in principle reduce this by a huge amount, by only storing the current
activations at any layer and discarding the previous activations on layers below.
From the parameter sizes: These are the numbers that hold the network parameters, their
gradients during backpropagation, and commonly also a step cache if the optimization is
using momentum, Adagrad, or RMSProp. Therefore, the memory to store the parameter
vector alone must usually be multiplied by a factor of at least 3 or so.

POOL2: [56x56x128] memory: 56*56*128=400K weights: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256
POOL2: [28x28x256] memory: 28*28*256=200K weights: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0
FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

 cs231n
 cs231n

karpathy@cs.stanford.edu

Every ConvNet implementation has to maintain miscellaneous memory, such as the image
data batches, perhaps their augmented versions, etc.

Once you have a rough estimate of the total number of values (for activations, gradients, and
misc), the number should be converted to size in GB. Take the number of values, multiply by 4 to
get the raw number of bytes (since every �oating point is 4 bytes, or maybe by 8 for double
precision), and then divide by 1024 multiple times to get the amount of memory in KB, MB, and
�nally GB. If your network doesn’t �t, a common heuristic to “make it �t” is to decrease the batch
size, since most of the memory is usually consumed by the activations.

Additional Resources
Additional resources related to implementation:

Soumith benchmarks for CONV performance
ConvNetJS CIFAR-10 demo allows you to play with ConvNet architectures and see the
results and computations in real time, in the browser.
Caffe, one of the popular ConvNet libraries.
State of the art ResNets in Torch7

https://github.com/cs231n
https://twitter.com/cs231n
mailto:karpathy@cs.stanford.edu
https://github.com/soumith/convnet-benchmarks
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://caffe.berkeleyvision.org/
http://torch.ch/blog/2016/02/04/resnets.html

