Scalable Inference in Hierarchical Models of the Neocortex

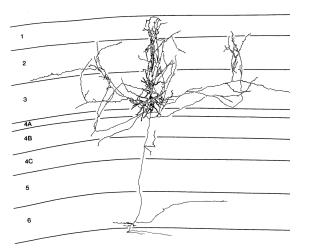
Thomas Dean Brown University

Anatomical Characteristics

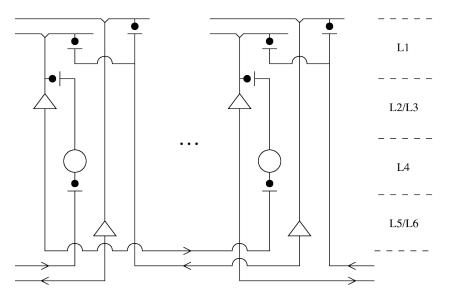
- Folded sheet the size of a large napkin
- Regular structure replicated throughout
- Cortical columns (Mountcastle)



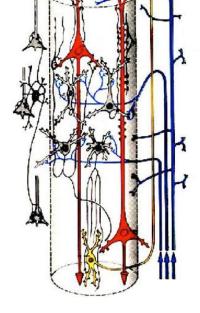
Cortical Columns



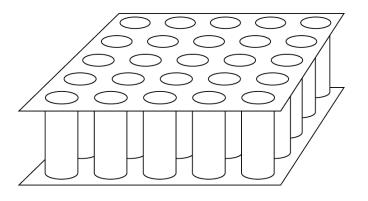
(Gilbert, 1993)



⁽Braitenburg and Schuz, 1991)

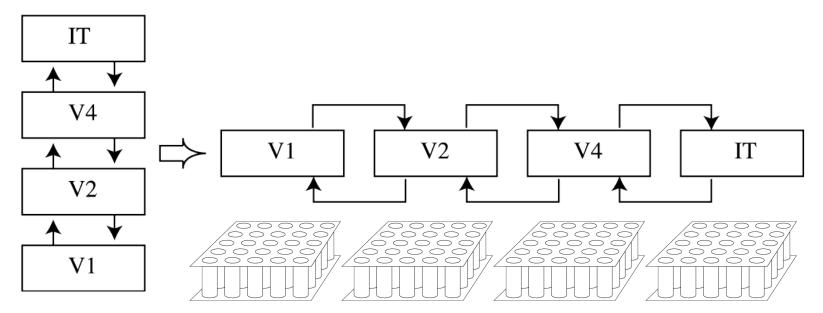


Receptive fields are mapped preserving spatial relationships (Hubel and Weisel)

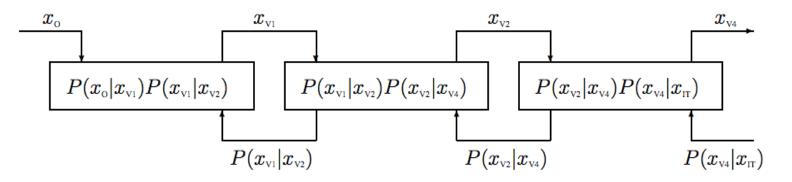


Functional Characteristics

- Hierarchical associative memory
- Pattern recognition and completion
- Powerful invariant representations
- Multiple modalities and resolutions



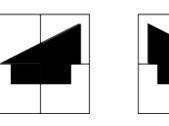
Lee and Mumford Model

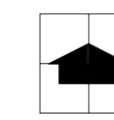


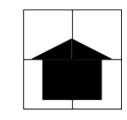
- Hierarchical model of the visual cortex
- Generative Bayesian statistical model
- Markov random fields (MRFs)
- Bottom-up data $\{x_i\}$ are fed forward
- Top-down priors $\{P(x_i | x_{i+1})\}$ are fed back

Generative Statistical Models

Recognizing simple patterns •







Receptive fields and tuned filters

LeftPitch

LeftFace

RightFace

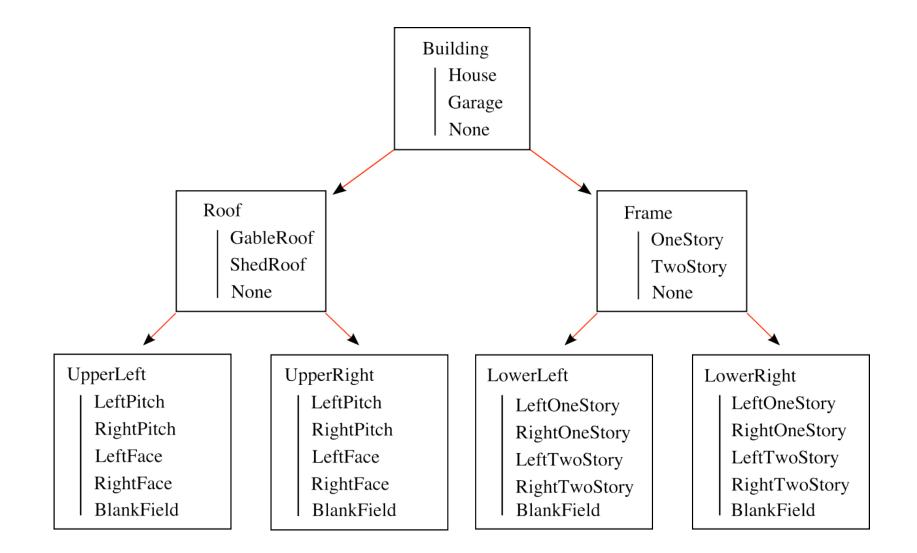
BlankField

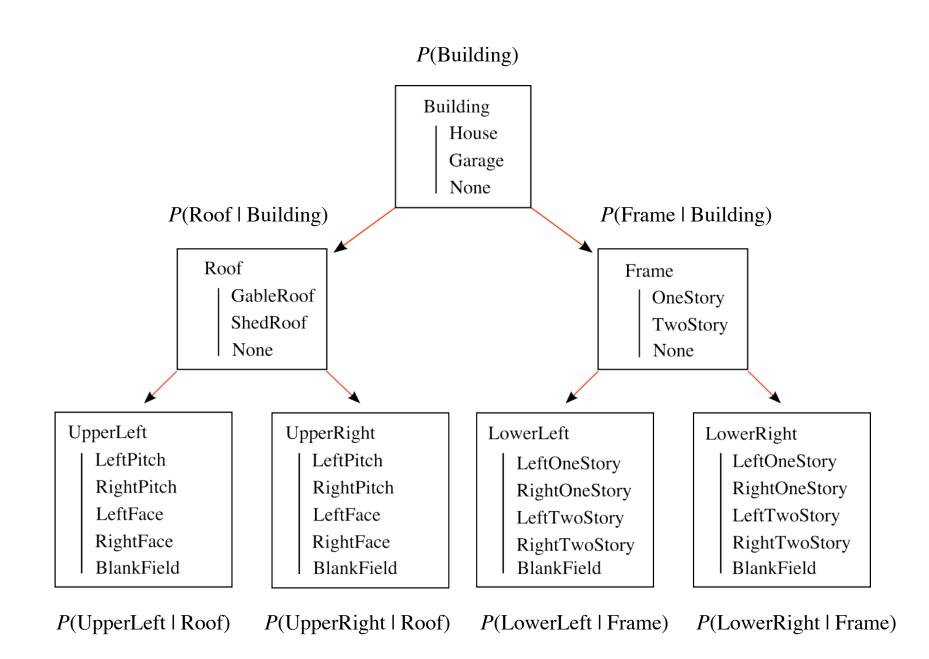
RightOneStory

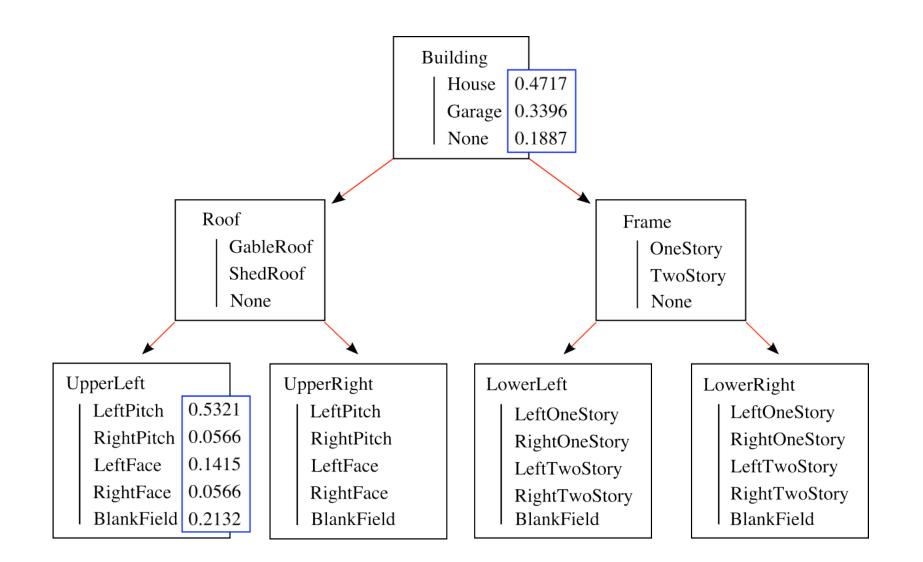
LeftTwoStory

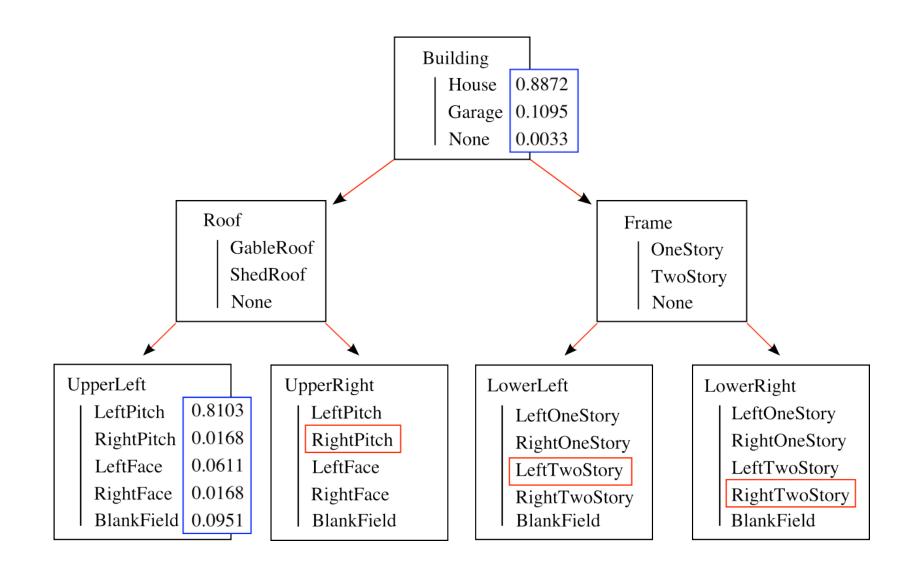
RightTwoStory

Hierarchy and Compositionality



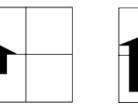


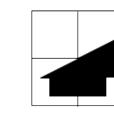


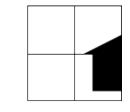


Representational Challenges

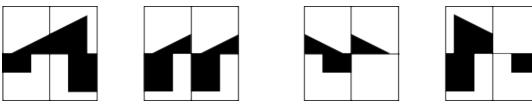
Translation and scale invariance



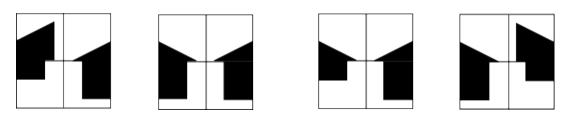




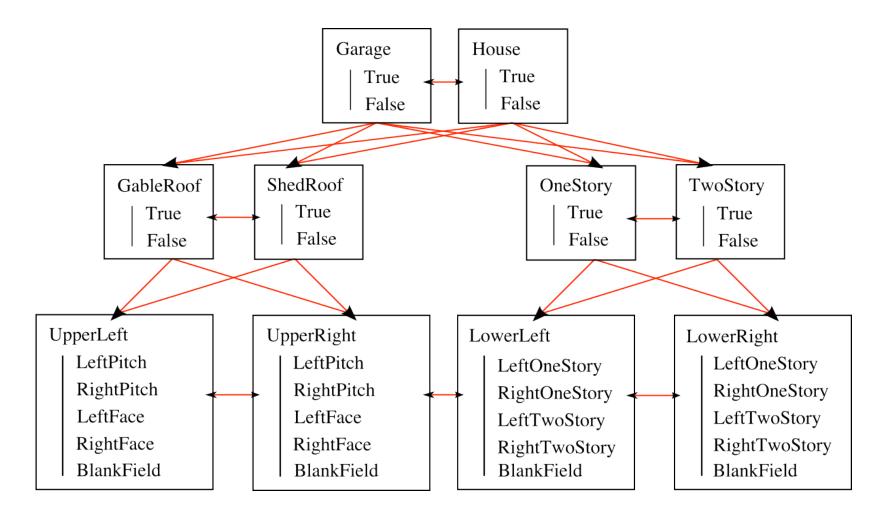
Compositionality constraints



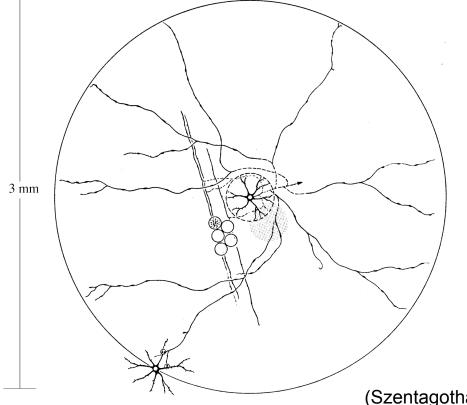
• Multiple instances of a concept



Dependent Random Variables



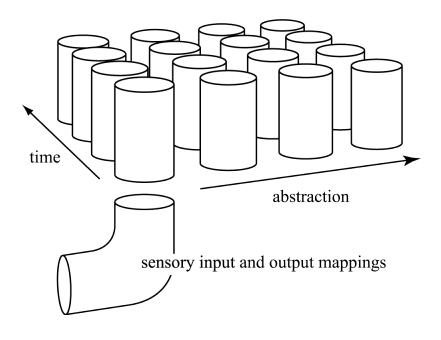
Cortical Connectivity



- 10¹⁵ connections
- 10¹¹ neurons
- Small-world graph
- Small diameter

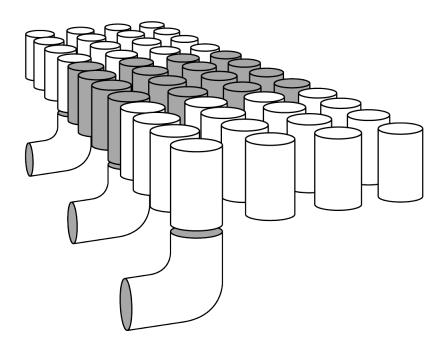
(Szentagothai, 1978)

Space, Time and Abstraction



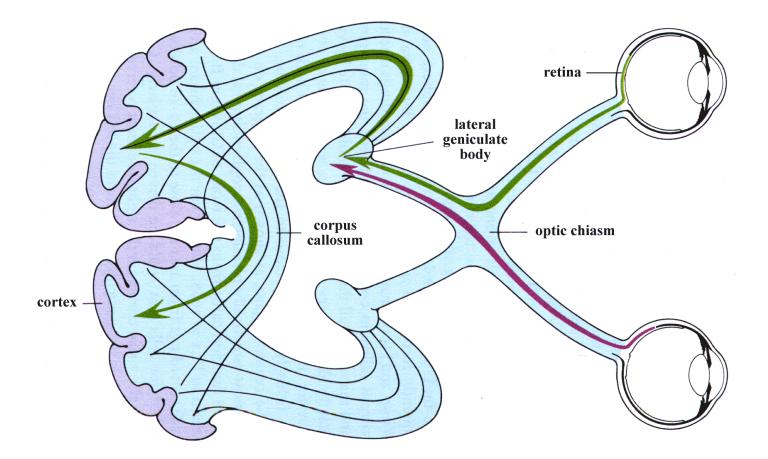
- Spatial relationships
- Temporal relationships
- Layers of abstraction

Multiple Modalities

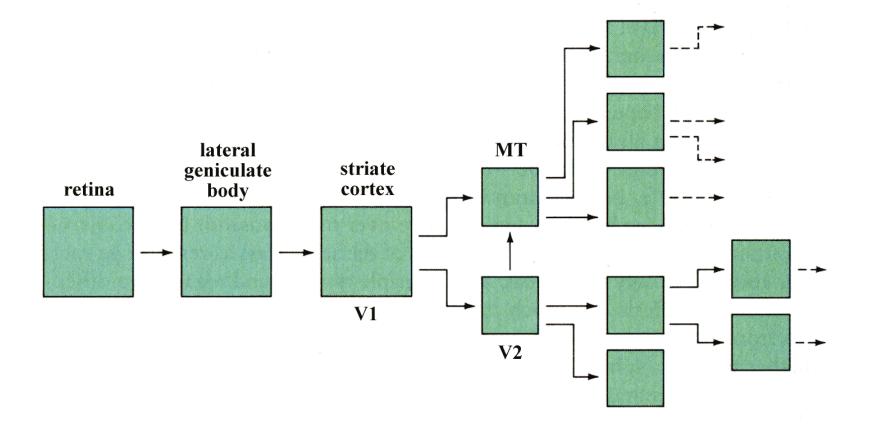


- Multiple resolutions
- Sensor integration
- Sensory correlation

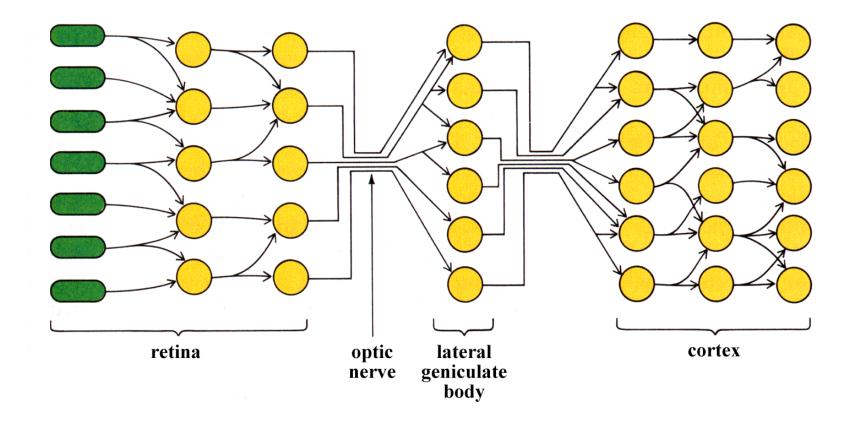
Primary Visual Pathways



Computational Modules



Neural Circuitry

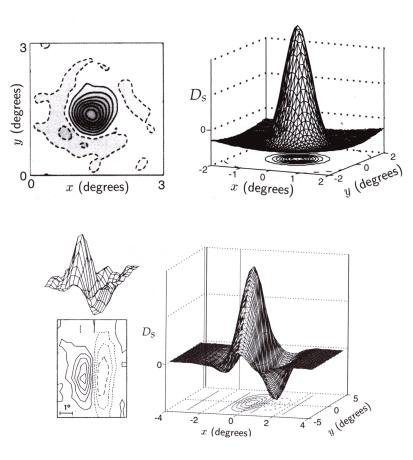


Simple Cells/Receptive Fields

 Center-surround cells in the retina and lateral geniculate nuclei — difference of Gaussians

Edge-sensitive cells in V1

 product of Gaussian
 and sinusoidal functions,
 Gabor functions

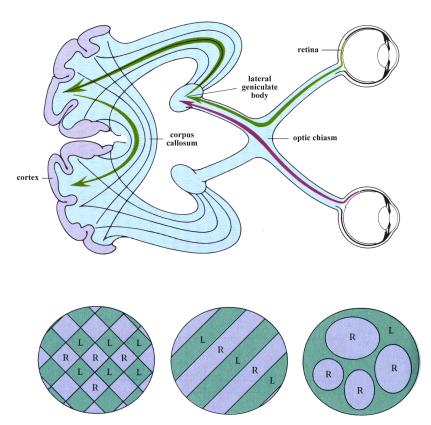


Simple versus Complex Cells

- Simple Cells
 - highly selective in their responses
 - partitioned into excitatory and inhibitory regions
- Complex Cells
 - able to implement *invariant* features
 - represent \sim 3/4 of the cells in the striate cortex
- Both Types
 - can respond to different orientations
 - can respond to spatio-temporal stimuli

Primary Visual Cortex

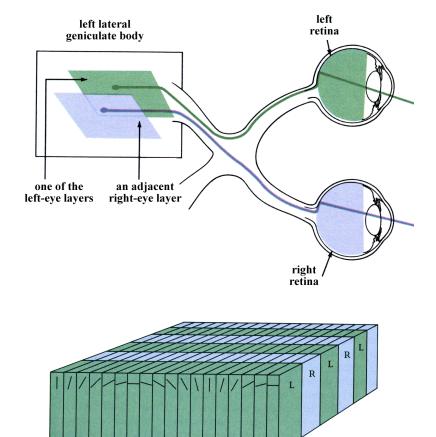
- Left and Right Stimuli
- Orientation Features
- How is it organized?

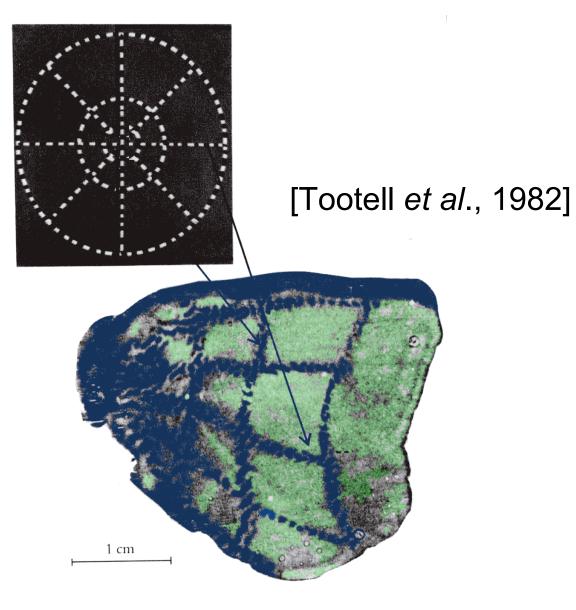


Organization of V1(area 17)

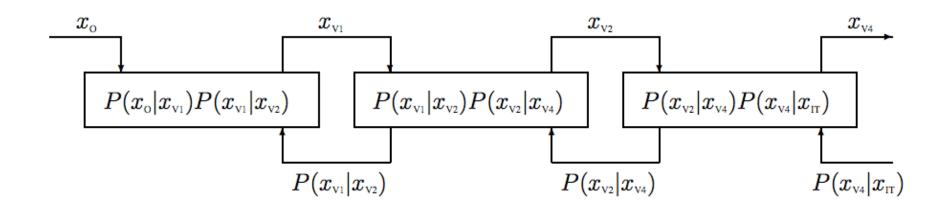
• Interleave left and right visual slices

String together the orientations from 0° to 180° in about 10° increments





Learning and Inference

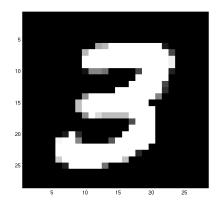


Learning

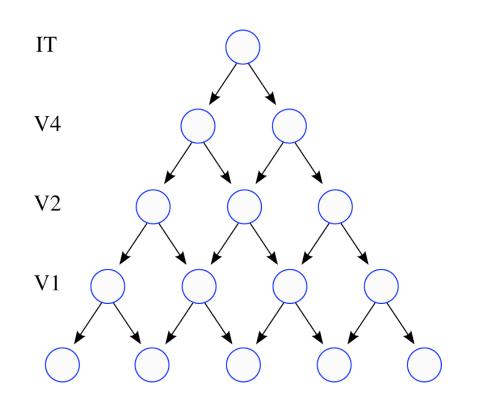
- Learning graphical models from data
 - Both structure and parameter learning (Jordan, 1998)
- Learning hierarchical invariant feature networks
 - Neocognitron (Fukushima *et al.,* 1983)
 - MAX operations (Riesenhuber and Poggio, 1999)
 - Slow feature analysis (Wiskott and Sejnowski, 2002)
 - Multiple-cause vector quantification (Ross and Zemel, 2003)
 - Hierarchical Bayesian networks (George and Hawkins, 2005)
 - Learning deep belief nets (Hinton, Osindero and Teh, 2005)

Learning (continued)

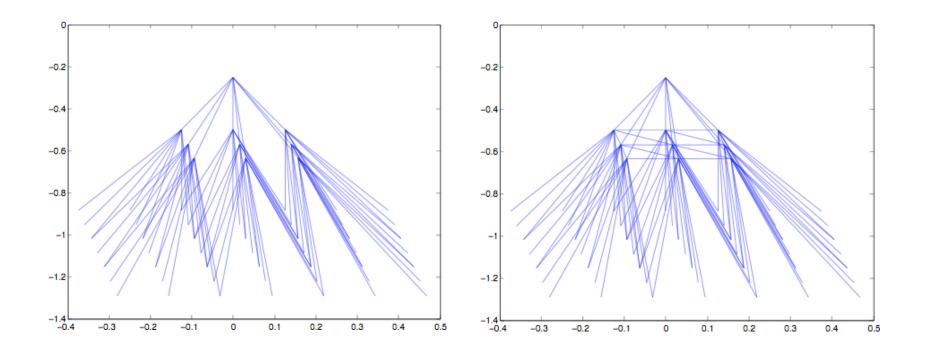
• Learning to recognize hand-written digits



 Specify hierarchical network structure

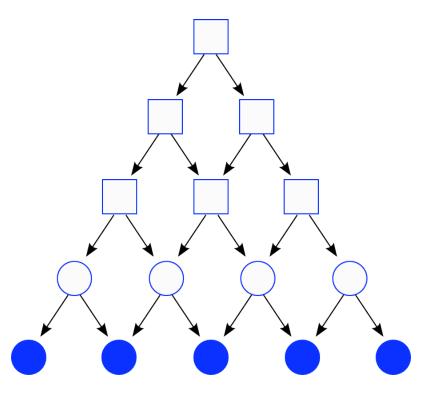


Pyramid-graph Bayes Networks

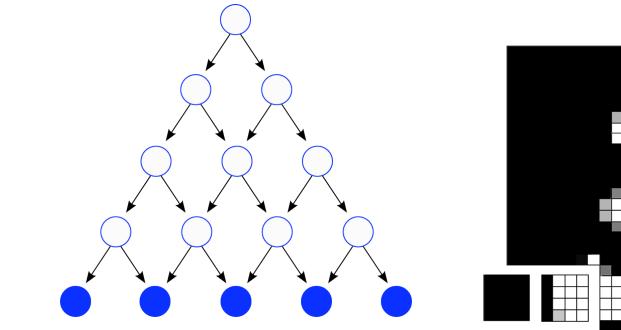


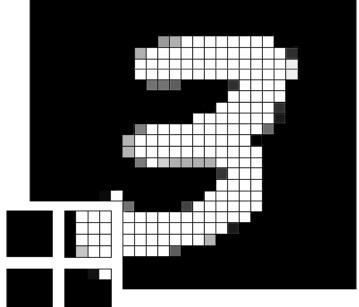
Learning (continued)

• Learn layer-by-layer from the bottom-up



Input Layer of Simple Cells



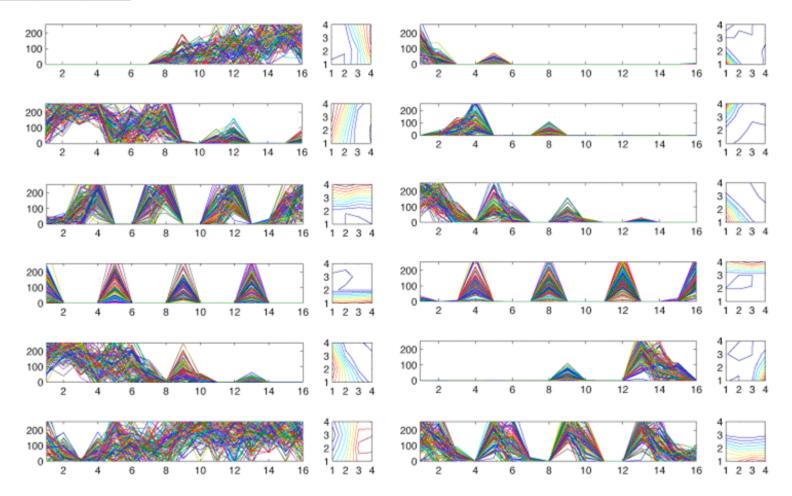


Mixtures of Gaussians

$$p(\mathbf{x} \mid \theta) = \sum_{k} \alpha_{k} \mathbf{N}(\mathbf{x} \mid \mu_{k}, \Sigma_{k})$$

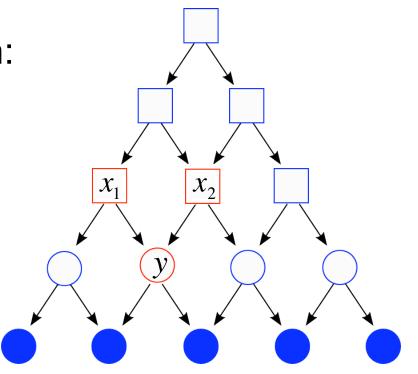
1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Mixture of Gaussians



Learning (continued)

• For each node *y* learn: *P*(*y* | Parents(*y*))



Complex Cells

Tabular nodes are profligate in numbers of parameters P(x | Parents(x))

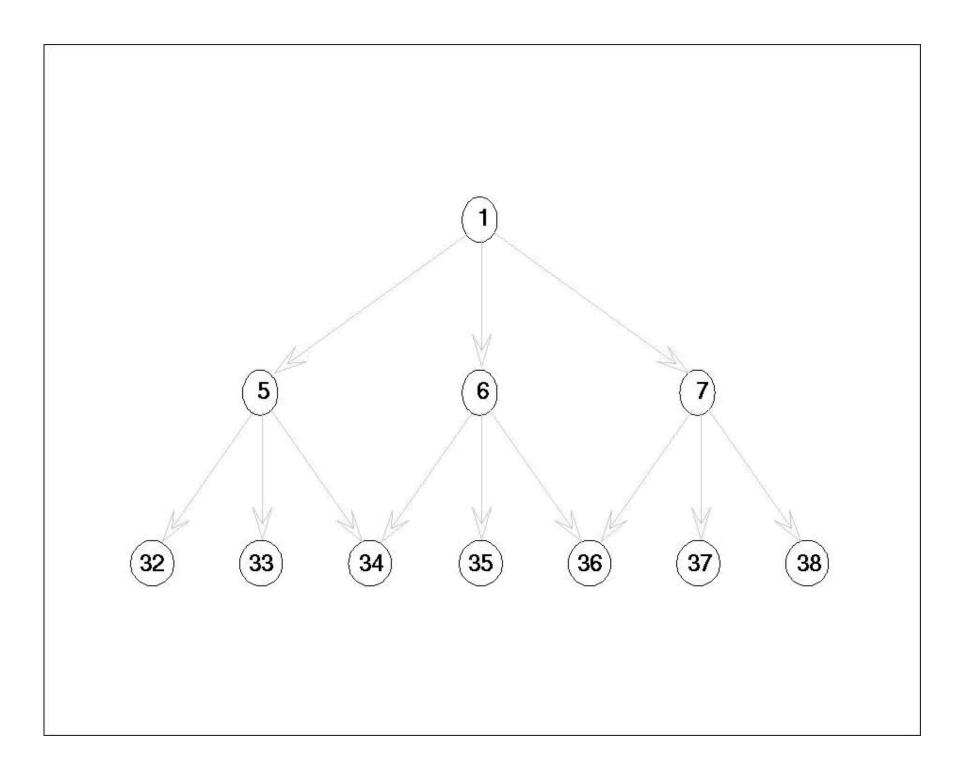
Naïve Bayes and noisy OR nodes are more sparing

$$P(\mathbf{x} \mid y) = \prod_{i} P(x_i \mid y)$$
$$P(x = 0 \mid \mathbf{y}, \alpha) = \exp\left\{\sum_{i} y_i \log \alpha_i\right\}$$

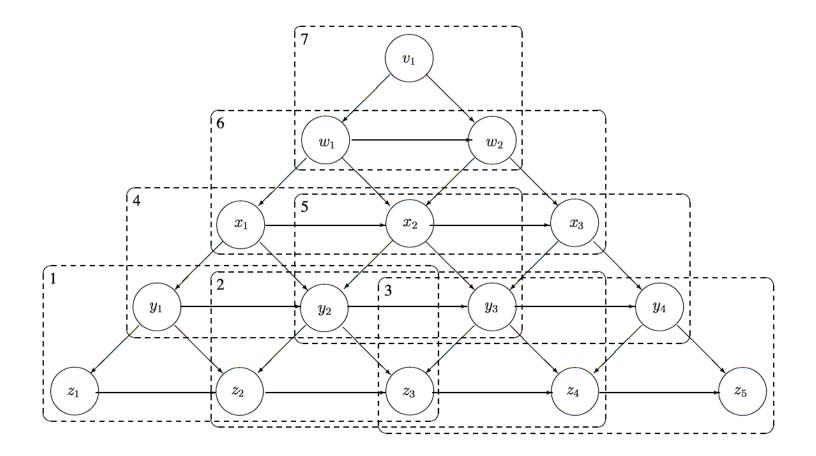
All three can be used to implement invariant features

Learning (continued)

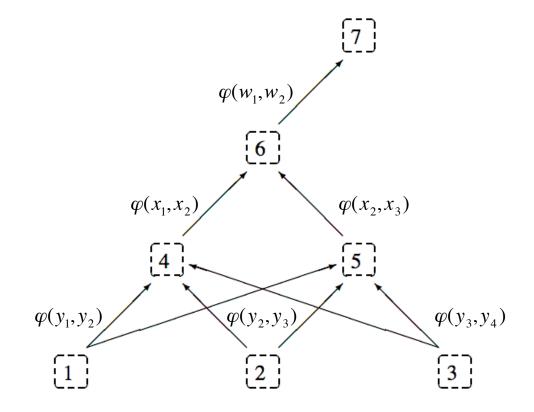
Observe input data *D* and compute the *belief function*:
 ∀*i*, Bel(x_i) = P(x_i | D)



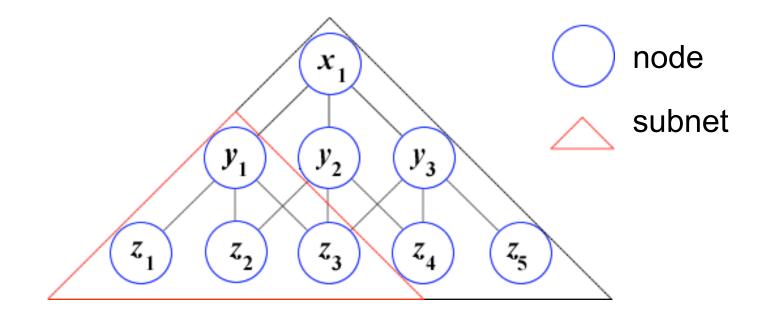
Subnet Decomposition



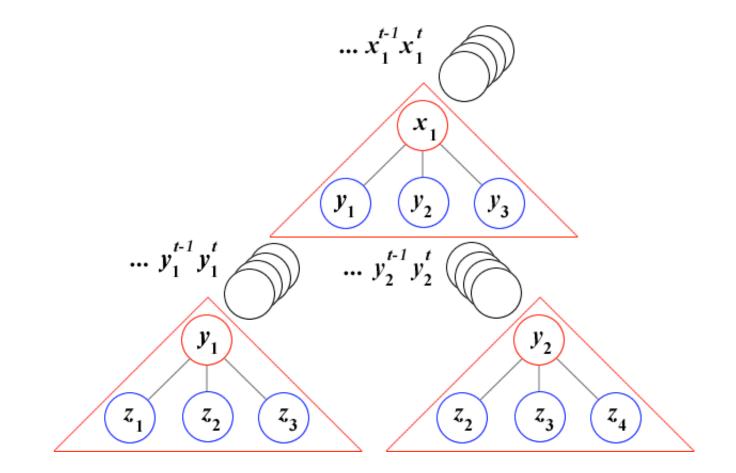
Propagation in Subnet Graphs



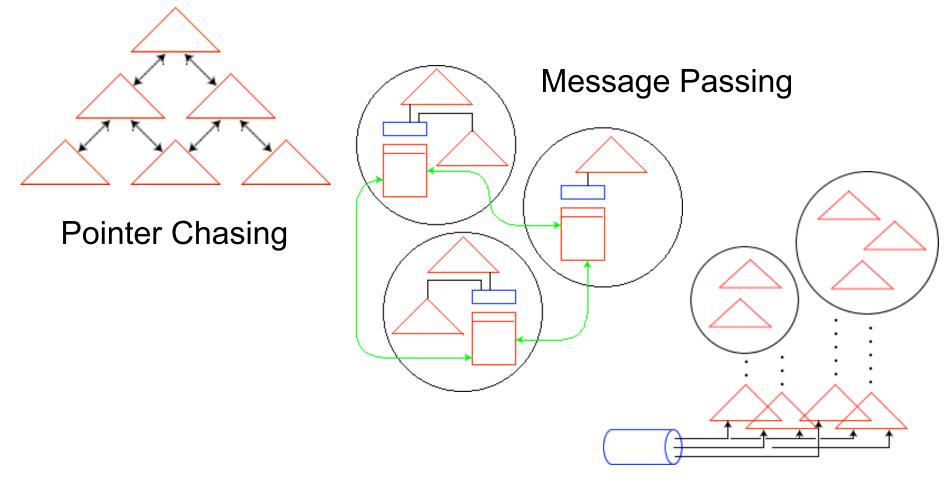
Pyramid-graph Fragment



Subnet Sample Propagation



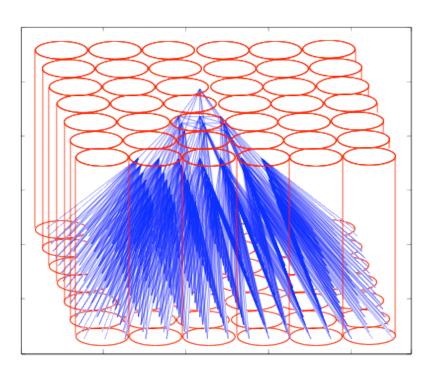
Serial and Parallel Implementation

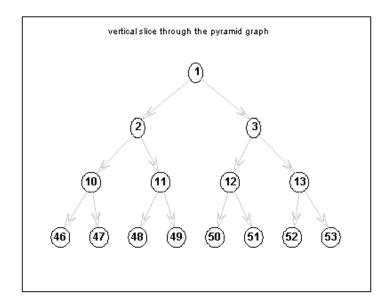


Publish / Subscribe

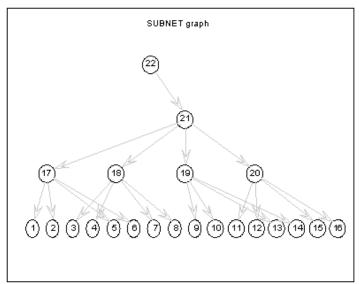
Simple Columnar Architecture

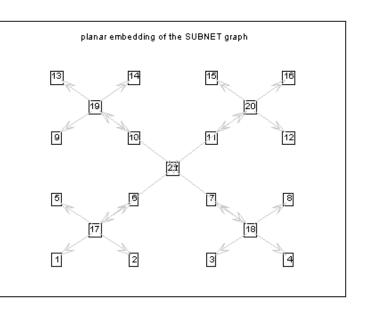
- One processor per column of nodes
- One process per subnet structure
- Performs variants of generalized belief propagation (GBP) [Yedidia, Freeman and Weiss, 2002]



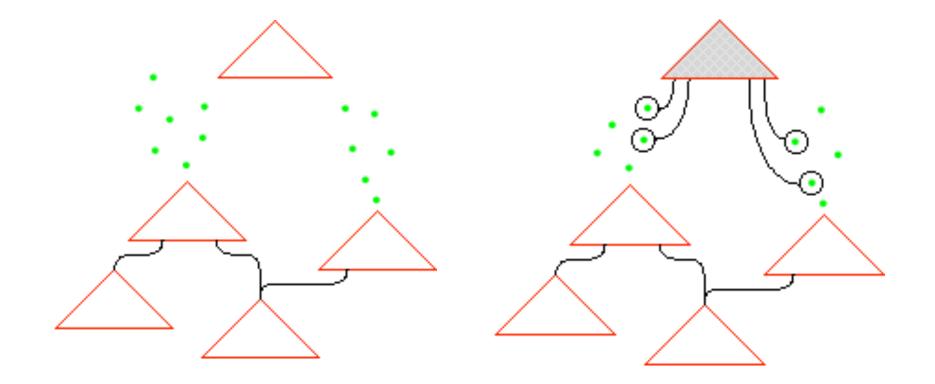


Message Passing Interface



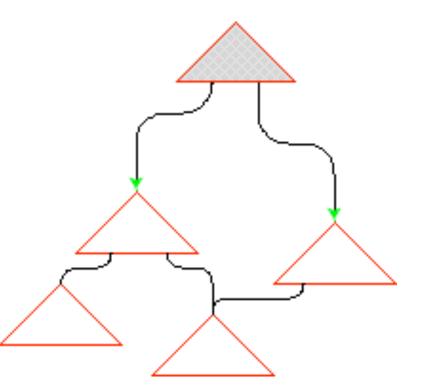


Publish / Subscribe



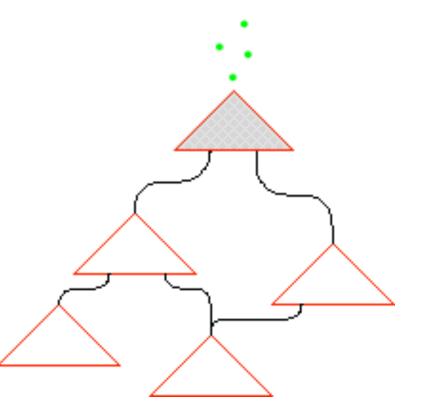
Unsubscribed & Unpublished

- Collect broadcasts
- Identify temporally & spatially proximate set of data publishers
- Bid on subscriptions
- Enter into contracts



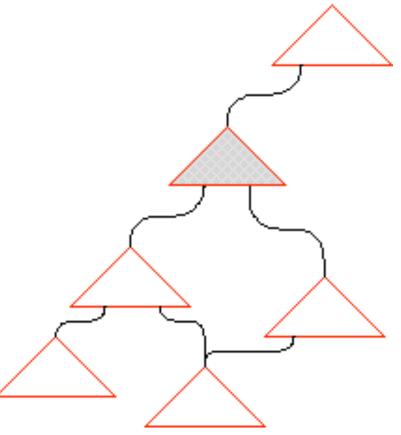
Unpublished

- Acquire a sufficiently large input sample
- Estimate parameters
- Broadcast data feeds for subscription



Trained & Published

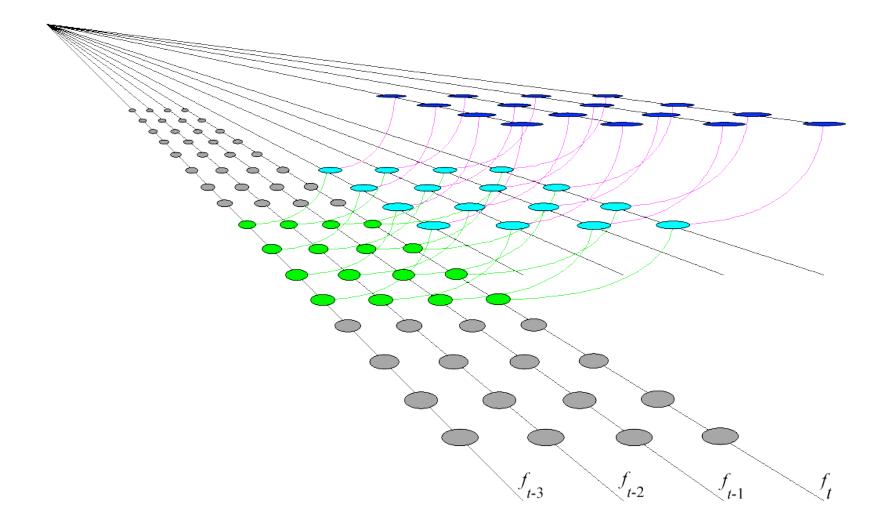
- Accept bids for subscription services
- Enter into contracts
- Monitor publisher & subscriber signatures



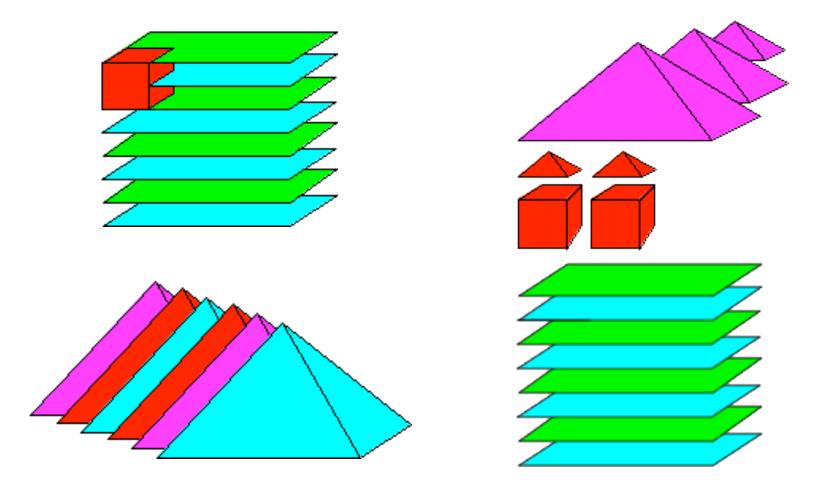
MapReduce Implementation

Wrote /Users/tld/presentations/05/AIMATH-05/figures/parallel/mapreduce.cpp

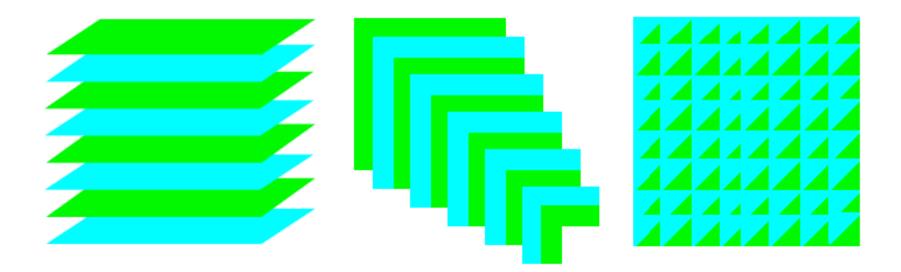
Some Perspective on Time



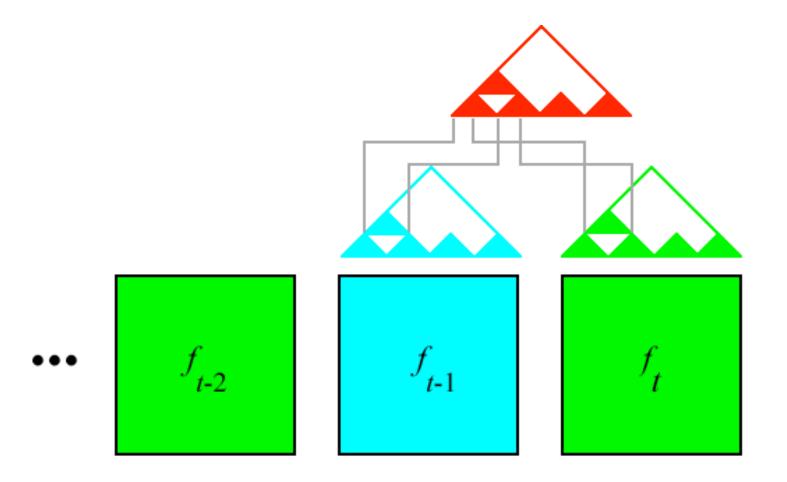
Spatiotemporal Receptive Fields



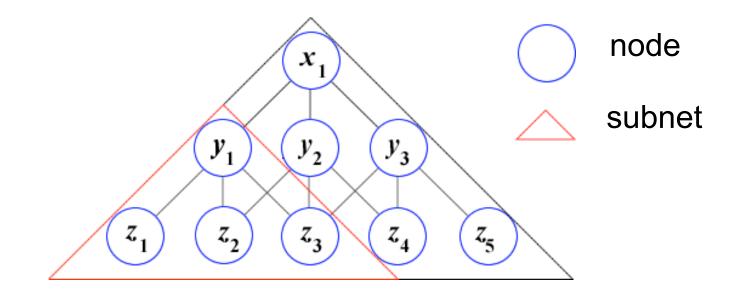
Organizing Time and Space



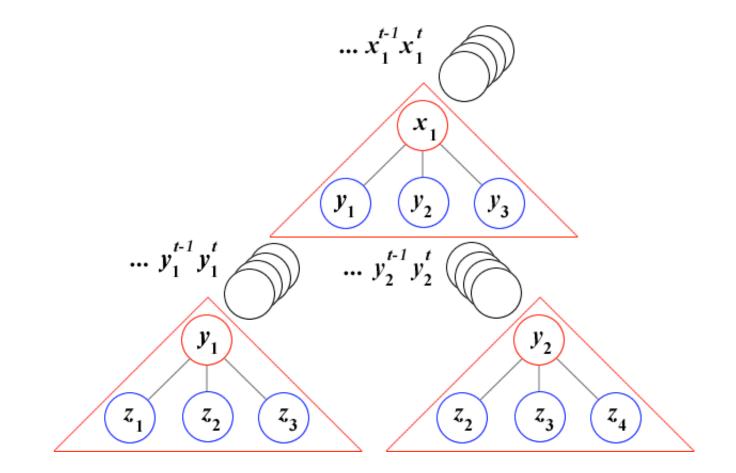
Video Frame Buffers



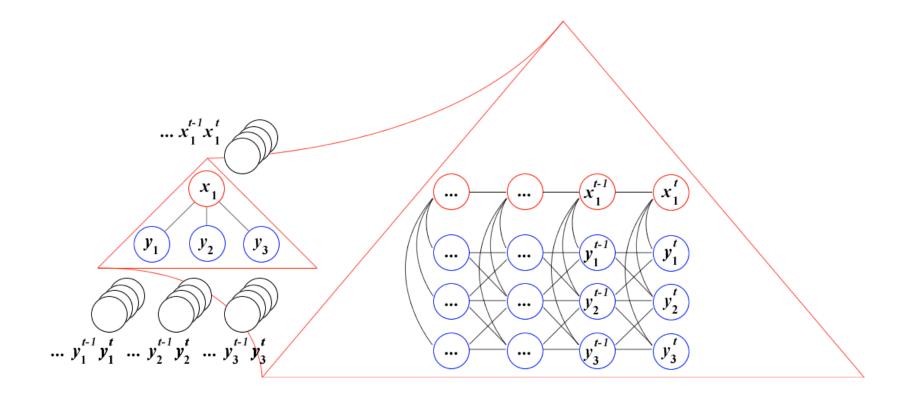
Pyramid-graph Fragment



Subnet Sample Propagation



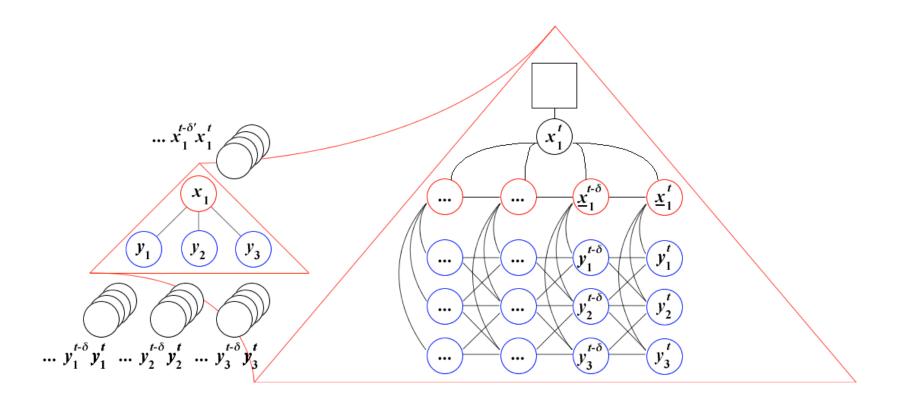
Inferring Spatiotemporal Features



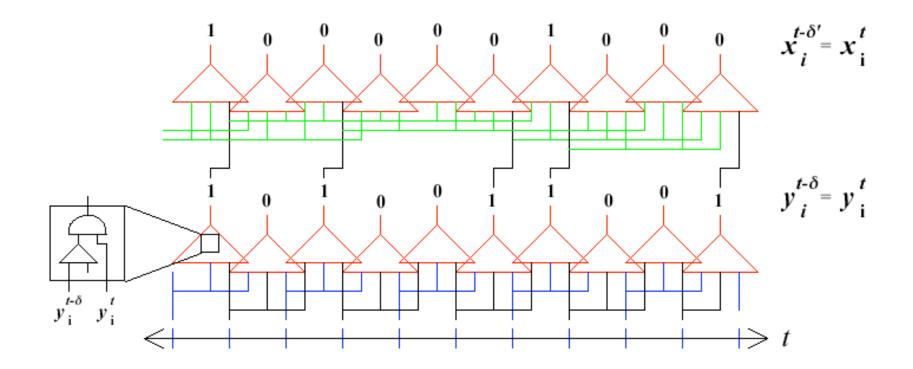
Hierarchical Hidden Markov Model



Subnet Sample Propagation



Variable Subnet Spatial Resolution



References

- G. Burns, R. Daoud and J. Vaigl. LAM: An Open Cluster Environment for MPI. In John W. Ross, editor, *Proceedings of Supercomputing Symposium '94.* University of Toronto. pp. 379-386. 1994.
- Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. *Proceedings of the 6th Symposium on Operating Systems Design and Implementation*. San Francisco, CA. pp. 137-150, 2004.
- S. Fine, Y. Singer and N. Tishby. The Hierarchical Hidden Markov Model: Analysis and Applications. *Journal of the Optical Society of America Association*, **20**(7):1237-1252, 2003.
- K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biological Cybernnetics*, **36**(4):93-202, 1980.
- D. George and J. Hawkins. A Hierarchical Bayesian Model of Invariant Pattern. *Proceedings of the International Joint Conference on Neural Networks,* 2005.
- M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. *Nature Neuroscience*, **2**(11):1019-1025, 1999.
- L. Wiskott and T. Sejnowski. Slow feature analysis: unsupervised learning of invariances. *Neural Computation*, **14**(4):715-770, 2002.

Picture Credits

- M. F. Bear, B. W. Connors and M. A. Paradiso. *Neuroscience: Exploring the Brain (2nd Edition).* Lippincott, Williams and Wilkins (2002).
- P. Dayan and L. F. Abbott. *Theoretical Neuroscience*. MIT Press (2001).
- D. H. Hubel. *Eye, Brain and Vision*. Scientific American Library (1988).