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Anatomical Characteristics
• Folded sheet the size of a large napkin
• Regular structure replicated throughout
• Cortical columns (Mountcastle)



Cortical Columns

Receptive fields are 
mapped preserving
spatial relationships
(Hubel and Weisel)

(Gilbert, 1993)

(Braitenburg and Schuz, 1991)



Functional Characteristics
• Hierarchical associative memory
• Pattern recognition and completion
• Powerful invariant representations
• Multiple modalities and resolutions



Lee and Mumford Model

• Hierarchical model of the visual cortex
• Generative Bayesian statistical model
• Markov random fields (MRFs)
• Bottom-up data {xi} are fed forward
• Top-down priors {P(xi|xi+1)} are fed back



Generative Statistical Models

• Receptive fields and tuned filters

• Recognizing simple patterns



Hierarchy and Compositionality
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Representational Challenges
• Translation and scale invariance

• Compositionality constraints

• Multiple instances of a concept



Dependent Random Variables



 Cortical Connectivity

• 1015 connections
• 1011 neurons
• Small-world graph
• Small diameter

(Szentagothai, 1978)



Space, Time and Abstraction

• Spatial relationships
• Temporal relationships
• Layers of abstraction



Multiple Modalities

• Multiple resolutions
• Sensor integration
• Sensory correlation



Primary Visual Pathways



Computational Modules



Neural Circuitry



Simple Cells/Receptive Fields

• Center-surround cells in the
retina and lateral geniculate
nuclei — difference of
Gaussians

• Edge-sensitive cells in V1
— product of Gaussian
and sinusoidal functions,
Gabor functions



Simple versus Complex Cells

• Simple Cells
– highly selective in their responses
– partitioned into excitatory and inhibitory regions

• Complex Cells
– able to implement invariant features
– represent ~3/4 of the cells in the striate cortex

• Both Types
– can respond to different orientations
– can respond to spatio-temporal stimuli



Primary Visual Cortex

• Left and Right Stimuli

• Orientation Features

• How is it organized?



Organization of V1(area 17)

• String together the
orientations from 0˚
to 180˚ in about 10˚
increments

• Interleave left and
right visual slices



[Tootell et al., 1982]



Learning and Inference



Learning

• Learning  graphical models from data
– Both structure and parameter learning  (Jordan, 1998)

• Learning hierarchical invariant feature networks
– Neocognitron (Fukushima et al., 1983)
– MAX operations (Riesenhuber and Poggio, 1999)
– Slow feature analysis (Wiskott  and Sejnowski, 2002)
– Multiple-cause vector quantification (Ross and Zemel, 2003)
– Hierarchical Bayesian networks ( George and Hawkins, 2005   )
– Learning deep belief nets (Hinton, Osindero and Teh, 2005)



Learning (continued)

• Specify hierarchical
network structure

• Learning to recognize
hand-written digits



Pyramid-graph Bayes Networks



Learning (continued)

• Learn layer-by-layer
from the bottom-up



Input Layer of Simple Cells
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• Mixtures of Gaussians



Mixture of Gaussians



Learning (continued)
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Complex Cells

All three can be used to implement invariant features! 
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Tabular nodes are profligate in numbers of parameters

Naïve Bayes and noisy OR nodes are more sparing

! 

P(x | Parents(x))



Learning (continued)
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• Observe input data D and
compute the belief function:





Subnet Decomposition



Propagation in Subnet Graphs
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Pyramid-graph Fragment

node

subnet



Subnet Sample Propagation



Serial and Parallel Implementation

Pointer Chasing

Publish / Subscribe

Message Passing



Simple Columnar Architecture

• One processor per
column of nodes

• One process per
subnet structure

• Performs variants of
generalized belief
propagation (GBP)
[Yedidia, Freeman
and Weiss, 2002]



Message Passing
Interface



Publish / Subscribe



Unsubscribed & Unpublished

• Collect broadcasts
• Identify temporally &

spatially proximate
set of data publishers

• Bid on subscriptions
• Enter into contracts



Unpublished

• Acquire a sufficiently
large input sample

• Estimate parameters
• Broadcast data feeds

for subscription



Trained & Published

• Accept bids for
subscription services

• Enter into contracts
• Monitor publisher &

subscriber signatures



MapReduce Implementation



Some Perspective on Time



Spatiotemporal Receptive Fields



Organizing Time and Space



Video Frame Buffers



Pyramid-graph Fragment

node

subnet



Subnet Sample Propagation



Inferring Spatiotemporal Features



Hierarchical Hidden Markov Model



Subnet Sample Propagation



Variable Subnet Spatial Resolution
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