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https://neurotech2017.kavlimeetings.org/

‘Move Eeyoncf [inear tﬁinﬁing. ‘Anticijoare ex]oonenu’a[
scafing. Accelerate science Ey cyo]oortunistica[@ exy[oiu’ng
existing wcﬁnofogy. Avoid banal tweets and gotﬁic fonts.

We started in 2013 on structural connectomics, oﬂeve[o]oec[
new infmstructure and scfrware for Joetaﬁyw datasets and
Joemﬂoy com]oumu'ons, ﬁigﬁfy [evemgeof machine [eaming.

Cell Type Staining

Collecting Activity & Connectomic Data

tics
. Computer Vision

Christof Koch. Project MindScope. In Frontiers in Computational Neuroscience, 2012 Bernstein Conference, number 33. 2012.




What we concluded was feasible in 2013:
https://arxiv.org/abs/1307.7302
Technology Prospects for Scalable Neuroscience

Automated reconstruction of dataset obtained by serial block-face electron
microscopy from a male zebra finch brain, achieving a mean error-free
neurite path length of 1.1 mm, an order of magnitude better than previously
published approaches applied to the same dataset. BioRxiv, October 2017.




Suppose we didn’t have the WWW and goog[e Search but

did have hundreds of data centers with millions of cores,
Su]oer-fast ﬁﬁer networﬁing and exaﬁyws of fast swmge?

Tnvent the WWW, index all @C the world’s Enowfea@e and
build Joowmﬁ[ search engines would be the ﬁrst order of

business. ﬂnformaﬁon sﬁam’ng rules. ﬂ-[ind&igﬁt is 20:20.




Access to data is what is ﬁofcﬁ’ng Us up now. Where can

we look for new Breaﬁtﬁmugﬁs to maintain the law @C

acce[emting ex]oonenu’a[ returns for neural reconﬁ’ng?
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What we concluded will be feasible in 2019:
http://arxiv.org/abs/1710.05183
Inferring Mesoscale Models of Neural Computation

We argue that the geometry of neural circuits is essential in explaining the
computational strategies inherent in biological information processing. We
propose a blueprint for how to employ tools from machine learning to
automatically infer a mesoscale model of neural computation by combining
functional and structural data, with an emphasis on learning and exploiting
regularities and repeating motifs in neural circuits. arXiv, October 2017.



http://arxiv.org/abs/1710.05183

In a word, amﬁcia[ inw[ﬁ’gence: ex]oonenu’a[ scaﬁng that

feecfs on itsegf. Q—[yjootﬁetica[fy, what would you do 1f Yyou
]aaicf the bills and were facea[ with the fo(fowing tma[eol?

Worﬁ on BTOLiHSfOT ten yem’s or WO?’E on ﬂﬂfm’ two yQOLTS
OITLC[ tﬁen WO?’Q on 61’011:115 omcf [6611’11 at feast as TYLUCﬁ 0160141'

brains in ﬁag" @"’ the time. Without data we slow to a crawl.

Tens cf thousands @"’ engineers are Worﬁing on ‘A‘l. ’J'ﬁey
are driven By ﬁuge economic incentives, insyireof Ey ﬁigﬁ

expecmu’ons and convinced cf the Bemﬁts of sﬁam’ng ideas.




Qf Yyou were on top of a[eqo feaming two years ago and
haven’t been Eeqaing track, you will need to run to catch
up with Your peers and some of Your peers will be A1.

The ﬁe[o{ is moving very fast. Recurrent and convolutional
nets are so yesﬁszay’s News, tﬁey are Eeing su}oyfam?c[ By

next—genemu’on attentional networks. So what else is new?

What about consciousness, attention, oma[ogica[ reasoning,
one-shot [eaming, scyoﬁisu’cawd continuous afiafog with
empathy and subtle theory-of-mind reasoning? Assistants.

It doesn’t take much @C a hint from nature to inspire an
engineer. Build a conscious agem‘? Check out Stanislas

Dehaene 2014, Michael Graziano 2015, Yoshua @engia 2017.




Automatic pregmmming? Start with code search. Index
billions @C [ines @C we[f-engineerecf code. EFmulate the art qf

inspirec[ imitation. Pattern memory + creative Jafagiarism.

Create a new neural network architecture? Build systems
that emjofoy reinforcement feaming to search ‘parameter

space and c[esign novel neural network architectures.

What was the most im]oormnt advance in neural networks
@C the last decade? Scalable inﬁastructure to expee[ite end-
to-end tmining. fngineers hate to wait cfays for results.

What will be the most imjoormnt accelerator for amﬁciaf
inte(figence in the coming decade? fxponenu’a[fy faster
inﬁastructure for searcﬁing NN space. ’Foresigﬁt 20:20.
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We argue that the geometry of neural circuits is essential in explaining the computational
strategies inherent in biological information processing. [http://arxiv.org/abs/1710.05183]
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We describe how to employ tools from machine learning to automatically infer a mesoscale
model of neural computation by combining functional and structural data, with an emphasis
on identifying and exploiting regularities and repeating motifs in large-scale neural circuits.

VII.

Prediction Accuracy at Time ¢+1

VL.

Model Predictions at Time 7+1

V. | Neural State Vector at Time ¢+1 A

’ IV. | Sparse Functional Basis Layer

~

FEEE R T

lIl. | Configuration Parameter Layer

. | Neural State Vector at Time ¢

- - ] Functional Domai
. | Topological Invariant Features {nctiona’ bomain

[IIHIT

= :

[TIHITHL

IS

[IIHIHIT



http://arxiv.org/abs/1710.05183

