
Program Der iva t ion Using Analogy

M e h d i T . H a r a n d i
Dept. of Computer Science

Univ. of Illinois at Urbana-Champaign

Sanjay Bhansal i
Dept. of Computer Science

Univ. of Illinois at Urbana-Champaign

A b s t r a c t

We present a methodology for using analogy to
derive programs based on a derivational trans­
format ion method. The derived programs are
deductively closed under the rules in the knowl­
edge base, and the emphasis is on speeding up
the derivation of a solution. We describe cer­
tain heuristics to find a good source analogue
to the target problem efficiently, show how the
derivation trace of that program can be used to
guide the derivation of the new program.

1 I n t r o d u c t i o n

Analogical reasoning is a mechanism for using past expe­
rience in solving a problem to solve a new, similar prob­
lem. Almost all the systems that perform analogical rea­
soning fal l under one of two broad categories. The first
category of systems use analogy to solve a problem for
which the domain theory is incomplete [Winston, 1980,
Falkenhainer et a/., 1986, Greiner, 1988]. In such sys­
tems it would not be possible to solve the problem by a
deductive mechanism, using only the known facts about
the domain, and it is necessary to fill in the missing
parts by analogy from a different situation or domain.
The other category of systems use analogy to speed up
the derivation of a solution. The final solution is deduc­
tively closed under the given domain theory, i.e. even
wi thout analogy, it would have been possible to arrive
at the solution. Such systems have mostly been used for
theorem-proving and program construction [Kl ing, 1971,
Dershowitz, 1983] though there are exceptions [Davies
and Russel, 1987].

1.1 U n i x P r o g r a m m i n g b y A n a l o g y

The work presented here falls into the second category.
It uses analogy to derive a program using past experience
in solving a similar problem. The domain of program­
ming is the Unix operating system environment. Unix
programming is very similar to conventional program­
ming. Its piping, sequencing, input-output redirection,
shell control constructs, etc. are similar to the con­
t ro l structures available in high level programming lan­
guages. However, Unix has a much richer set of pr imit ive
commands. These can be considered similar to a l ibrary
of standard subroutines in conventional programming.

Thus one works wi th a richer set of bui lding blocks than
is available in general programming.

1.2 P r o b l e m Spec i f i ca t ion

The system described here is designed to work on top of
an automatic programming system which takes a semi-
formal specification of a problem and produces the cor­
rect sequence of Unix commands or a shell script to solve
the problem. A problem specification in our system has
the following form:

INPUT: P r i m i t i v e - o b j e c t s
WHERE:<type-spec> SUCH-THAT:Constra in ts>

OUTPUT: P r i m i t i v e - f n (a r g u m e n t s)
WHERE:<type-spec> SUCH-THAT:<constraints>

EFFECTS: P r i r a i t i v e - f n (a r g u m e n t s)
WHERE:<type-spec> SUCH-THAT:<constraints>

Here, I N P U T and O U T P U T specify the input and
outputs of a program, and EFFECT specifies any side-
eflfects that a program may have. The W H E R E slot
describes the domains for the various fields, and SUCH-
T H A T specifies the constraints on the field values. For
example, to specify a program that prints the name of
all files greater than 10K and the owner of the file, the
problem specification would be:

INPUT: d i r WHERE: (D i r e c t o r y d i r)
OUTPUT: (L i s t f u)

SUCH-THAT: (and (Belongs f d i r)
(> (S ize 1) 10K)
(Owner u f)

WHERE: (and (F i l e f) (User u))

In the above examples, Belongs, Owner, etc. are pre­
defined predicates/functions and files, directories, users,
etc. are pre-defined objects known to the system. In
addit ion, it is possible for a user to define new relations,
functions and objects and use them in a problem specifi­
cation. For example a user may define an ANCESTOR
function as :

#DEFINE ances tor
INPUT: f SUCH-THAT: (<> 1 / /) WHERE: (F i l e f)
OUTPUT: (LIST d)

SUCH-THAT:(= d (Un ion(Parent d)
(Ances to r (Pa ren t d))))

WHERE: (D i r e c t o r y d)

Harandi and Bhansali 389

1.3 T h e Ru lebase

The system has three different levels of rules, each rep­
resenting a different degree of generality. These rules are
used to generate a Unix program for a given specifica­
t ion. The steps taken in decomposing a problem and
the set of rules applied in the process form the basis for
solving analogical problems.

At the highest level the system has rides that en­
code domain-independent high level strategies for prob­
lem solving. These rules are encoded in the form of
stereo-typed templates of shell scripts, similar to the
concept of programming cliches in KBEmacs [Waters,
1981], wi th the appropriate commands filled in for solv­
ing the particular problem. Examples of such strategies
are recursively-solve, divide-and-conquer, and loop-over-
objects.

The second level of rules are related to solving prob­
lems in the operating system domain. These rules encode
common sense reasoning about problem solving, e.g. To
count the number of objects of type A, map the objects of
type A into objects of type B, count the number of objects
of type B, and apply the inverse mapping relation to the
output of count.

The th i rd category of rules are those that are specific
to the Unix operating system. This is the largest part
of the rule base, and forms an index to the commands
available in Unix. An example of such a rule would be:
To list all sub-objects of a directory use command Is.

2 F i n d i n g Analogues

Before a system can apply an analogy, it has to discover a
source analogue. Unlike some systems, we do not assume
that the analogues to be matched are specified by the
user. Therefore, the system has to find a source analogue
given the target problem. To do this task it has some
heuristic knowledge bui l t i n .

To get an intui t ive feel for the k ind of knowledge re­
quired to find analogue matches, we consider an exam­
ple. Suppose we want a program that removes all the
files bigger than 10K. Suppose we have already solved
a problem to delete all processes w i th cpu times greater
than 1000 sec. A program to solve this would be: form
a list of all the processes, select all processes whose cpu
time is greater than 1000 sec, retrieve their process-id's
and kill the processes. Seeing this solution, we can get
an insight on how to solve the problem of deleting all
files bigger than 10 K : Form a list of all the files, select
those whose size is greater than 10 K, retrieve the file
names and remove the files.

Both the above problems involve deleting objects and
comparing numbers. But this is not the main reason
that the analogy worked. To see this, consider another
problem of changing the names of al l files that do not
have wri te access by appending a suffix .read to them.
This problem has nothing to do w i th deleting objects
or comparing numbers, but the same program structure
can be used to solve this problem: Form a list of all files,
select those files that do not have write access, retrieve
their names, say name , and change it to name.read .

The reason the analogy worked in both the cases is

that they arc both instances of the search-and-process
paradigm. They involve a search for a particular object
among several similar objects and then some processing
on a particular at tr ibute of that object. Abstractly, each
of the above problem can be stated as:

Apply C(x) where x 6 D such that P(x)

where C is an abstract funct ion, D is the type of the
input and P is the predicate characterising those x on
which the operator C is to be applied.

The success of the analogical reasoning system is,
therefore, contingent on detecting the occurrence of such
paradigms from the problem specification. At the same
time, note that Problem 2 seems to be "more" analogous
to Problem 1 than to Problem 3. Thus, given both Prob­
lems 1 and 3 in the knowledge base, to solve Problem
2, we would like Problem 1 to be retrieved rather than
Problem 3. Thus, the analogue matcher should return
not just a possible source analogue, but the best possible
source analogue in the knowledge base. The next section
gives some heuristics on how this can be done.

2.1 H e u r i s t i c s t o D e t e c t Ana log ies f r o m
P r o b l e m Spec i f i ca t ions

2.1.1 F u n c t i o n a l a b s t r a c t i o n h e u r i s t i c
If two problems involve instantiations of the same ab­

stract function, then it might be possible to replace the
program fragment corresponding to that funct ion in the
source program by an analogous program fragment in
the target program.

The first example above illustrates this. Both delet­
ing a file and ki l l ing a process are instantiations of the
abstract function Remove . If we know the program
fragment for finding the object, we can append the code
corresponding to deleting a file or k i l l ing a process to get
one or the other program.

Such analogies can be detected by bui lding an abstrac­
t ion hierarchy for the various functions as i l lustrated in
Fig. l a . Note, that most of the functional i ty provided
by Unix has already been captured in our specification
language. For example, instead of specifying k i l l process
or remove directory the user would simply say:

EFFECT:(Remove / f o o) WHERE:(Directory / f o o)
o r , EFFECT-.(Remove p r) WHERE: (Process p r)

However, one feature of Unix (and also our system) is
that it allows a user to invent new commands and hence,
not al l the functions can be captured by our specification
language. But the system can st i l l bui ld the abstrac­
t ion hierarchy dynamically f rom the specification of the
problem. Thus, suppose a user creates a new command
make-index defined as :

390 Automated Deduction

INPUT: f oo WHERE: (F i l e f oo)
OUTPUT:(List w n) SUCH-THAT:...

WHERE:(and (Word w) (I n t n))

then, the command gets automatically incorporated into
the abstraction tree shown in Fig. 1(b), since the output
of the command is to display a l ist. So, when we get a
new problem make-table , defined as

INPUT: f oo WHERE: (F i l e f oo)
OUTPUT:(List a b c) WHERE:... SUCH-THAT:...

we can immediately access the make-index command,
and if there is some similarity, use that command to
generate a program to create the table.

2.1.2 Same h i g h e r o r d e r r e l a t i o n s h i p be tween
a r g u m e n t s o r S y s t e m a t i c i t y heu r i s t i c

This heuristic is based on the systematicity principle
proposed by Gentner [Gentner, 1983]. Slightly abusing
the definit ion, we can say that if the input and output
arguments of two problem specifications are related by
the same abstract relationship, then the two problems
are more likely to be analogous.

Again, the first example in section 4.1 provides an
i l lustrat ion of the application of this heuristic. It is in­
structive to look at the formal specification of the two
problems:

PI.-INPUT: d WHERE: (D i r e c t o r y d)
EFFECT:(Remove f)

WHERE:(File f)
SUCH-THAT:(and (Belongs f d)

(> (s i z e f) 10))
P2:INPUT: u WHERE: (User u)

EFFECT: (Remove p)
WHERE: (Process p)
SUCH-THAT: (and (Belongs p u)

(< (cpu - t ime p) 15))

In this example, the two arguments of each prob-
lem are related by the same relation Belongs . But
more interesting is the second constraint, which says
that a unary function of the output argument of each
problem is related by the abstract relation comparison
(instantiated to > and < respectively). If we view
each unary function as an abstract relation called At ­
tr ibute w i th two arguments - the name of the attr ibute
and the original argument - then, the above constraints
((> (At t r ibute(f , size), I0)and(< Aitribute(p, cpu -
time), 15)) can be seen as instances of the following
second-order relation 1:

Rel2 (Rel l (a rg l , proper ty l) , Re lO)

Therefore, according to the systematicity heuristic the
two problems may be analogous.

To detect analogous problems based on the system­
atici ty heuristic, the system would have to determine
the order of each relation in the problem specification
and then match the highest order relation from the two
problems. If they belong to the same abstract relation

1The order of a relation is defined as follows: Constants
are order 0. The order of a predicate is 1 plus the maximum
of the order of its arguments.

then the corresponding arguments of the relation have
to be matched recursively unt i l the zero-order relations
are matched.

2.1.3 S im i l a r syn tac t i c s t r u c t u r e heu r i s t i c
For those functions that are defined dynamically by

the user, there is another clue which can suggest that
two problems might have analogous solution: the struc­
tural similarity of the function definition. Thus, i f both
functions are recursive then their solutions would be very
similar. For example a program to find ancestors de­
fined in section 1.2 might consist of a shell file called
ancestor. When this file is called wi th an argument, the
shell script checks that the argument is not ' / ' (end-of-
recursion test), prints the parent of the argument and
invokes the same file again wi th the parent as the ar­
gument. Having solved this, it is easy to determine a
program for descendants defined below:

Descendants : -
INPUT: (L i s t d i r) WHERE: (D i r e c t o r y d i r)
OUTPUT: (L i s t t)

SUCH-THAT:(= f (Un ion(Sub-ob jec ts d i r)
(Descendant

(Sub-ob jec ts d i r))))
WHERE:(Fi le-objects f)

The program would involve creating a similar shell
file, that checks that its argument list is non-null and
then for each argument it prints the sub-objects under
i t , and calls the file recursively wi th the sub-object as
the argument.

It may be remarked that problems having a similar
definition structure can generally be solved by using
strategy rules, since both are inherently syntactic in na­
ture.

2.1.4 A r g u m e n t a b s t r a c t i o n h e u r i s t i c
As in the case of functions, we can envision an abstrac­

t ion hierarchy for certain objects which appear as argu­
ments in the problem specification. In some cases if two
problems have arguments that belong in the same ab­
straction hierarchy, the two problems may be analogous.
For example, count number of paragraphs, count num-
ber of lines and count number of words are analogous.
A l l involve finding a way of recognizing a text-object by
finding its terminator (white space for a word, a newline
for a line, a blank line for a paragraph), mapping them
to a countable object and counting that (using the rule
given in section 1.3). However, in other cases it may not
work, e.g. a page is not recognized by a delimiter but in
terms of the number of lines (typically 24).

2.2 H o w t h e Heu r i s t i c s I n t e r a c t w i t h each
o t h e r

In general each of the above heuristic wi l l suggest several,
and possibly different, problems as a potential analogue
of the target problem. Therefore the matcher needs to
decide what importance should be attached to each sug­
gested alternative, and in what order they should be
tr ied.

The most important heuristic seems to be the sys­
tematicity heuristic, and if there are any problems sup-

Harandi and Bhansali 391

ported by that heuristic the matcher tries them first.
Next in importance are the definit ional structure and
the functional abstraction heuristic. In case of ties, the
problem wi th the maximum number of support from the
lower heuristic is used to decide which problem should
be tr ied. The fourth heuristic is not really strong enough
to be used as a basis for deciding on a particular problem
as the source analog, and is used only as a support for
strengthening the candidature of a problem suggested by
the other heuristics.

3 Derivat ional Analogy

3.1 P r o b l e m s w i t h D i r e c t S o l u t i o n
T r a n s f o r m a t i o n

Most analogy systems are based on a solution trans­
formation method [Kl ing, 1971, Dershowitz, 1983, Car-
bonell, 1983a]. In this method the system retrieves
the solution of a problem which is similar to the cur­
rent problem, and perturbs the solution, guided by some
heuristics, unt i l it satisfies the requirements of the new
problem. Such systems ignore the reasoning behind
the various steps used in deriving the original solution.
Though this method works in some domains, it is inade­
quate in program construction, and even when they work
they often result in inefficient and inelegant solutions.

As a simplistic example, suppose we have program
which counts the number of occurrences of each word
in a file. This program first forms a list of all the words
occurring in the file and then for each word finds how
many times it occurs in the fi le. The list of al l words in
the file is formed by wr i t ing each word of the file in a
separate line and then deleting duplicate lines.

Now, suppose we want to derive a program to count
the number of occurrences of each character in a file us­
ing the above. Using a solution transformation method
on the final program, one would produce a program that
finds a list of all characters in the file by l ist ing each
character on a separate line and deleting duplicate lines,
which is extremely inefficient, since there are only about
a 100 or so characters in a text file, which are known a
pr ior i by any programmer.

We use a derivational transformation method based
on [Carbonell, 1983b]. Such a method avoids the kind
of inefficiency encountered above, because it records the
reasons for each step in the program derivation. There­
fore, it can figure out that the reason for wr i t ing each
word in a separate line and then deleting duplicate lines
is to get a l ist of unique words in the file; and, since it
knows of a direct method of l ist ing al l possible characters
in a file, it can generate a more efficient program.

3.2 D e r i v a t i o n T race

A derivation trace consists of the subgoal structure of
the problem, a pointer to each rule used in decomposing
the problem at each node of the tree and the final solu­
t ion. Fig. 2a shows the derivation tree for a program to
find the most frequent word in a file.

F ig. 2b and 2c show some of the rules in English used
to derive the sub-tree below each node, and the Unix

3.3 T h e D e r i v a t i o n a l T r a n s f o r m a t i o n M e t h o d

The derivational transformation method can best be un­
derstood by going through the derivation of an example.
The source program is the same as shown in Fig. 2. The
target problem is:

Find the most frequent file name in a system.
Assume that the system has selected the problem in Fig.
2 as the best possible analogue to this problem, based
on the heuristics given in section 4. The first step in
generating a solution to this problem is to see if there is
a direct Unix command to do this. The rules pertaining
to Unix commands are stored separately f rom the other
rules and are always searched first. Since there isn't a
direct command to solve the problem, the system tries
to generate a program by an analogue transformation of
a previous solution.

The first rule used in Fig. 2a is rule R l . This rule
is applicable to the target problem w i th object being in ­
stantiated to file-name. So the system uses the same rule
to get the top-level decomposition of the problem.

Next, the system goes down the left branch of both
the source and target trees, and repeats the process,

392 Automated Deduction

t i l l it comes to a node where the rule is not applica­
ble. This happens when it tries to apply rule R4, which
is applicable only for text-objects in a text-stream. At
this stage, the system reverts back to its usual prob-
lem solving mode and tries to solve the problem by first
principles. (Eventually, it wi l l discover the Is -r com­
mand which lists al l objects under a directory and the
grep command to remove extraneous information about
sub-directories, l inks, etc.)

The other nodes of the sub-tree referring to removal
of duplicate lines, mapping the file-names into lines and
counting lines, and taking the maximum from the list
remain valid for this problem, and hence, that part of
the program remains the same.

The final program resulting from this method is shown
in Fig. 3.

<Code to get list of flle~name9>
FOR word ln 'sort / tmp / f l | unlq'
DO

count = 'grep Sword / tmp / f l | we - I '
echo Sword $count

DONE
<Code to find maximum>

Fig 3. Unix program to find the most frequent fi le-name
under a directory.

Note, that at each step the system checks for a direct
method of solving the problem; thus, it can take advan­
tage of a more efficient method of solving the problem,
i f i t exists.

3.4 A lgo r i t hm

We now give the an outline of the algorithms used for
deriving a program by analogy. The general algori thm
for solving a problem is given first.

S O L V E (P)

1. Search the command-l ibrary to see if P can be solved
directly by using a Unix command. If so, then re­
turn that command as the solution for P, else con­
tinue.

2. F ind P', the best possible analogous problem to P,
using the analogue-matching heuristics. If such a
problem cannot be found go to step 4.

3. Cal l the A N A L O G Y algori thm on P and P' If it
returns a solution, return that solution, else go to
step 4.

4. Using the rules in the knowledge-base, decompose
the problem into sub-problems. In general this wi l l
return a set D, each element of which represents a
way of decomposing the problem. Whi le D is non-
empty repeat :

Choose any decomposition d E D and
delete it f rom D. Let d = (p1,P2,—,Pn)
, where each p, represents a sub-problem
of P. For each p i, call SOLVE(p i) , and let
S i denote the solution returned. If none
of the S i is FAIL , and the al l the S i's are
compatible (see notes below), then return
the sequence (S1, s2,...,Sn) as the solution
for P.

5. Return FAIL .

In step 4 above, after each of the sub-problem is solved,
it is sti l l necessary to check that the solutions do not in ­
teract destructively, and invalidate the solution for P.
Therefore, after a potential solution is obtained, it is
passed to a plan analyzer, which checks that the sub-
goals achieved by each sub-solution is not destroyed by
the other sub-solutions. If necessary, the plan analyzer
re-orders the solutions. However, if it is not possible to
achieve the goal even after re-ordering, it reports failure,
and the algorithm has to consider some other decompo­
sition scheme and/or backtrack.

Before presenting the A N A L O G Y algorithm we de­
fine two terms. Two problems are said to be directly
analogous if the same rule R applies wi th the same in­
stantiation of parameters for the two problems. They
are possibly-analogous if the same rule R is applicable to
both the problems wi th a different instantiation of the
parameters.

A N A L O G Y (P , P ')

1. Compare P and P \

(a) If they are DIRECTLY-ANALOGOUS perform
the analogical substitutions in S, the program
fragment correponding to P , to get S' the pro­
gram fragment corresponding to P '

(b) If they are POSSIBLY-ANALOGOUS go to
step 2.

(c) Return FAIL.

2. Let R be the rule used to decompose P into sub-
problems p1,P2,.-.,pn • Use the same rule to de­
compose P' into sub-problems p1,p'2 ...,Pn'-

3. For each sub-problem pi' do :
Check the command-library to see if it can be solved
directly using a Unix command. If so, record that as
the solution, si . Else, let si = A N A L O G Y (p i-,Pi').
I f * = FAIL, let s i z r S O L V E R ') . I f S O L V E R)
also returns FAIL, then return FAIL.

4. Check that the solution set (s1, s2, • ••> Sn) is compat­
ible. If so, return i t , else return FAIL.

Note that the algorithm checks whether the sub-
problems obtained after decomposition can be solved
directly using a Unix command (step 3). Hence, if a
more efficient solution exists for the problem, the sys­
tem would discover i t .

Thus, the system integrates tradit ional problem-
solving methodology wi th analogical reasoning, without
sacrificing the possibility of finding a better solution for
a problem.

4 W h e n to use Analogy?

As has been mentioned, the solutions obtained by the
analogical process could have been obtained deductively
from the rules in the knowledge base without using anal­
ogy. Therefore, a natural question to ask at this stage
is: under what conditions should one t ry to use analogy
to solve the problem?

Let t A (P) be the time to solve a problem P using
purely analogical reasoning and t D (P) be the t ime taken
to solve the same problem using direct problem-solving

Harandi and Bhansali 393

methods. For analogical reasoning to be just i f ied we
want that:

The t ime taken to solve a problem using analogy de­
pends on the t ime taken to find the analogy and the
number of rules used in the derivation of the solution.
Thus, assuming that all rule applications take the same
amount of t ime, we may say:

where tm is the t ime to find an analogue source problem,
n is the number of rules used to solve the problem, and
C is a constant. Solving a problem using direct problem-
solving techniques requires a search through the knowl­
edge base of rules. If k is the average number of rules
searched for each rule that is finally applied then

Therefore, for such problems the use of analogy is jus­
tified if the sum of the t ime to find analogs and the time
to apply the rules is much smaller than the t ime to search
the knowledge base for the rules.

However is most of the cases, analogy alone is insuf­
ficient to solve the problem. Let p be the average pro­
port ion of rule that are matched directly using analogy
and q = 1 — p be the average proport ion of rules that are
obtained through a search of the knowledge base. The
time to solve a problem using analogy is now given by:

)

For analogy to be just i f ied,

The above equation suggests that analogy wi l l be use­
ful if:

1. The t ime to find analogue matches is small.

2. The degree of simi lar i ty of the source problem to
the target problem is high.

3. The number of rules that have to be searched (and
hence k) is large.

4. The size of the problem (and hence n) is large.

The t ime to find analogue matches does not depend
on the size of the knowledge base of rules but only in the
size of the knowledge base of stored programs. To reduce
this factor it is important that the problems should be
stored judiciously. Some of the plausible heuristics that
the system can use to decide whether a problem should
be stored in the knowledge base are: (i) The number of
rules used in deriving the problem is large; (i i) The t ime
taken to solve the problem is large; (i i i) The length of
the final solution is large; (iv) The degree of match of
the problem wi th some previous problem is low.

The four th criteria is important to reduce redundancy
in the knowledge base.

5 Conclus ions

This work presents a paradigm for using analogy to de­
rive programs from a problem specification, using the
derivation of an earlier program. It differs f rom pre­
vious work on deriving programs using analogy in two
respects. First, it maintains the derivation history of a

program to determine when an analogical transforma­
t ion can be validly made. Secondly, it does not depend
upon an external user to provide a source analogue. It
uses certain heuristics to efficiently find a good source
program that is analogous to the new program. The
program derivation process combines ordinary problem
solving w i th analogical reasoning to find the solution of a
problem as efficiently as possible. The program derived
is deductively closed under the rules in the knowledge
base. Thus, the soundness of the solution does not have
to be verified.

The system presented here is under development as
part of an automatic programming project to automate
Unix programming. The success of the design can only
be judged after it has been applied on a large knowledge
base, but it seems reasonable to believe that the system
would perform better as the size of the knowledge base
increases, and deriving programs by a search through
the knowledge base becomes more and more computa­
t ional ly expensive.

A c k n o w l e d g e m e n t s : We thank Gregg Collins for early
crit icism of the work. The paper has benefited from
comments of Br ian Falkenhainer and members of
the KBPA group.

References

[Carbonell, 1983a] J. G. Carbonell. Learning by Anal­
ogy: Formulating and generalizing plans from past
experience, in Machine Learning: An Artificial In-
telligence Approach, R.S. Michalski, J.G. Carbonell,
and T . M . Mitchel l , eds. Morgan Kaufmann, Los A l ­
tos, 1983, pp. 137-161.

[Carbonell, 1983b] J. G. Carbonell. Derivational Anal­
ogy and its Role in Problem Solving. AAAI-83, 1983,
pp. 64-69.

[Davies and Russel, 1987] T.R. Davies and S.J. Russel.
A Logical Approach to Reasoning by Analogy. IJCAI-
81, 1987.

[Dershowitz, 1983] N. Dershowitz. The Evolution of
Programs. Birkhauser, Boston, 1983.

[Falkenhainer et ai, 1986] B. Falkenhainer, K. Forbus,
and D. Gentner. The Structure Mapping Engine.
AAAI-86, August, 1986.

[Gentner, 1983] D. Gentner. Structure-mapping: A
Theoretical Framework for Analogy. Cognitive Sci­
ence, vol. 7(2), 1983, pp. 155-170.

[Greiner, 1988] R. Greiner. Learning by Understanding
Analogies. Artificial Intelligence 35. 1988, pp. 81-125.

[Kl ing, 1971] R.E. K l ing . A Paradigm for Reasoning by
Analogy. Artificial Intelligence 2, 1971, pp. 147-178.

[Waters, 198l] R.C. Waters The Programmer's Appren­
tice. IEEE Transactions on Software Engineering,
11(11), 1981, pp. 1296-1320.

[Winston, 1980] P.H. Winston. Learning and Reasoning
by Analogy. Communications of the ACM, vol. 23,
December, 1980, pp. 689-703.

394 Automated Deduction

