Imitation Learning for Code Generation via
Recurrent State Space Embeddings

Marcus Gomez Nate Gruver

1. Introduction

In their 1988 paper, Rich and Waters define the Program-
mer’s Apprentice as an “intelligent computer program that
functions like a human support team,” providing guidance
in requirements, design, and implementation of programs
[21]. The Programmer’s Apprentice is differentiated from
a simple code auto-completion agent in its ability to under-
stand software design considerations and engage in helpful
dialogue with the software engineer [23]].

As we considered the problem of the programmer’s ap-
prentice, we came to agree that interfaces are among the
most important structural elements of code. In fact, in con-
sidering our own coding habits, we realized the most helpful
assistant would be one that can comprehend design through
the structure of an interface and assist in the completion of
the code through a divide-and-conquer approach.

In this work, we focus solely on the goal of implementa-
tion, proposing a novel framework for code generation that,
given a sketch of helper function interfaces, suggests both
use of primitive language operations and structuring of pro-
grams through decomposition.

2. Related Work
2.1. Related neural program synthesis tasks

Neural program synthesis focuses on generating explicit
programs that meet a particular semantic specification. A
large body of work in program synthesis has focused on
program generation given a limited set of input and out-
put examples. This task formulation enables the synthesis
and evaluation of a variety of programs as long as they ac-
complish the same functionality (avoiding the problem of
program aliasing), but must overcome the problem of gen-
eralization to input-output pairs outside of the training set.
Recent work has discovered that incorporating the notion of
recursion into neural program synthesis architectures signif-
icantly improves their generalizability while enabling for-
mal provable guarantees that a generated program can gen-
eralize perfectly [3]]. Other work has layered reinforcement
learning on top of supervised techniques to reward the gen-
eration of semantically correct programs rather than solely
rely on similarity to a single target program (which may in-

Michelle Lam

Rohun Saxena Lucy Wang

correctly penalize differing semantically correct programs)
[2]. Given the success of these approaches for the input-
output pair task formulation, we similarly take advantage of
structural hierarchies in code and apply RL rather than su-
pervised approaches to generate semantically correct pro-
grams.

Meanwhile, neural program induction aims to design
and train neural architectures that can mimic the behav-
ior of a desired program. The neural programmer inter-
preter (NPI) is a neural program induction algorithm that
consists of a task-agnostic core that decides what subpro-
grams or primitives to invoke and includes domain-specific
encoders designed to operate in diverse coding environ-
ments [20]. A benefit of this approach is that a single NPI
can learn from a small number of examples and leverage
previously-learned programs to complete new tasks. Re-
cent work in robot learning has built upon this technique
to take task demonstrations, recursively decompose them
into sub-tasks, and feed the decomposition into an NPI [26].
Founded upon the notion of meta-learning to learn how to
instantiate neural programs through recursive decomposi-
tion of a task, this method has demonstrated strong general-
ization on hierarchical tasks. While we choose to focus on
neural program synthesis to explicitly generate compilable,
interpretable code, we take inspiration from this method
whereby a controller delegates the generation of each sub-
function by feeding in a subset of the task specification.

2.2. Program synthesis from structured input

Furthermore, prior work achieves promising results in
the domain of program synthesis by adding structure to the
input and output. For the related program translation task
in which code is translated to another language, existing
work has utilized the parse trees of input and output pro-
grams to develop tree-to-tree translation models and achieve
state-of-the-art performance [6]. In program synthesis, re-
cent approaches have utilized syntax checkers or neural syn-
tax models to condition on the syntactical correctness of a
program and significantly prune the large search space of
potential programs [2]. Prior work has also experimented
with domain-specific structural input constraints by gener-
ating code representations of cards and their functionality in

the Magic the Gathering game [16]]. Other work adds struc-
ture to the code representation itself via a canonical traver-
sal of the output AST (abstract syntax tree) and constrains
the prediction problem to the identification of this traversal
[[7]. Meanwhile, other work utilizes a custom DSL (domain-
specific language) to predict the AST and evaluates effec-
tiveness in a novel way by computing coverage (number
of words in the natural language description mapped to ac-
tual code), mapping (likelihood of NL to code mapping cor-
rectness), and structure (similarity in structure between the
code and the NL description) [9]. Additionally, a recent ap-
proach has proposed a two-step process of first generating
a program sketch from minimal amounts of structured code
information, and then, generating code from the program
sketch. This enables separation between high-level seman-
tics and program specific idiosyncrasies [18].

2.3. Program synthesis from natural language

One of the more challenging problems in the program
generation domain is transforming natural language de-
scriptions directly to code. Previous work has used gram-
mar structures in natural language to generate abstract syn-
tax trees [27]]. Additionally, there have been efforts to trans-
late text to specific scripting applications: for example,
encoder-decoder networks with attention have been used to
generate shell script from natural language [15]], and a two-
stage latent attention model has been used to generate IFTT
programs from English descriptions [4]. More recently,
work has been done to generate SQL queries from natural
language, leveraging an reinforcement learning technique to
learn a policy from pointer networks applied to the natural
language sequence and data frame header [28]. Other ap-
proaches have used a combination of natural language and
input-output examples (and unit tests) in effort to generate
more accurate programs [19] [8].

In addition to code synthesis from natural language, the
reverse problem been explored: given a code input, gener-
ate a natural language output description. Multiple works
have generated datasets that map code to language descrip-
tions [13]] [[11]. Translation approaches have included us-
ing LSTMs to convert StackOverflow code snippet answers
to their corresponding English questions, as well as using
neural machine translation architectures to generate git diffs
from commit messages [[12]][[11].

At a high level, translation attempts involving natural
language and code have generally tackled simple code snip-
pets: simple functions, short queries, or even single lines of
code. To our knowledge, there is sparse precedent for trans-
lation between natural language descriptions and complex
programs with multitudes of interacting functions.

3. Problem Formulation

// Main function that creates a HashMap of first names

// mapped to phone numbers given a list of full

// names and phone numbers

def main(names: Array[String], numbers:Array[String]) {
first_names = get_firstnames (names)
clean_numbers = get_numbers (numbers)
address_book = create_mapping(first_names, clean_numbers)
return address_book

} —> HashMap[String, Int] //return type

// Takes a list of full names and returns a list
// of the first name space separated
def get_firstnames (names: Array[String]) {
remove_punctuation (names)
//rest filled in by the library and NL intent
} —> Array([String]

//applies a series of functions to list of strings
// returning the cleaned numbers
def get_numbers (numbers: Array[String]) {

numbers = remove_punctuation (numbers)
numbers = add_area_code (numbers, "650"
numpbers = add_country_code (numbers, "1")
numbers = tolnt (numbers)

} —> Array[Int]

//Removes all punctuation from a list of strings
def remove_punctuation (numbers: Array[String]) {

//Filled by NL intent and library of modules
}

//Adds default area code passed in to each number in list

// if length is less than 10

def add_area_code (numbers: Array[String], default: String) {
//Filled by NL intent and library of modules

} —> Array[String]

//Adds default country code passed in to each number in list

def add_country_code (numbers: Array[String], default: String) {
//Filled by NL intent and library of modules

} —> Array[String]

//Converts every entry in list from a String to an Int
def tolInt (numbers: Array[String]) {

//Filled by NL intent and library of modules
} —> Array[Int]

//make a map with keys as first list and values as second list
def create_mapping(first: Array[String], numbers: Array[Int]) {
//standard function that will be in library of modules

} —=> HashMap[String, Int]

Figure 1. Example of the header file that would be provided by the
programmer.

In considering the Programmer’s Apprentice problem,
we sought to design an agent that could integrate seam-
lessly into a programmer’s work flow. We deviated away
from canonical designs that require copious interaction be-
tween the human and the agent [23], in favor of a design
that allows the Apprentice to remain unobtrusive. In our
framework, the human provides a design architecture as a

main

o

get_firstnames get_numbers

—

| remowve_punciuation ‘

add_default_area_code

A

add_detault_country_code

Figure 2. Example of a dependency DAG that would be passed
in as an input. Leaf nodes (blue) will not call any user defined
functions.

header file (a format familiar to any programmer), and the
Assistant automatically fills in the rest.

Formally, we define the problem as follows. As input,
the architecture takes in a header / prototype file, contain-
ing the types of every function defined by the user, and
corresponding natural language descriptions of each func-
tion (see Figure[). As additional input, we define what we
call a dependency graph, which is a DAG; each node in the
graph represents one of the functions, and a directed edge
from function f; to function f; indicates that f; may call the
function f, in execution (see Figure[2]["] Lastly, the code that
has been written for all of the children of a given function f
will be passed in as input as well.

More formally, let the primitive types of the DSL be
contained in the set T. Define the DAG as some graph
G = (F,E), where F are the user defined functions and E
are the aforementioned between them. We assume that ev-
ery node in the DAG can have at most K¢ children, that the
DAG has a single root, and that the longest path from the
root to a child is at most length Kp, where K¢ and Kp are
chosen based on the dataset.

Then, each function can be represented as the tuple
f = (ti, to, NL, C¢), where ti, t, € T are the input and out-
put types, NL € RN*M where N is the size of the natural
language embedding (here, we opt to use GLoVE vectors),
and M is the maximum number of allowed tokens in the
natural language description (i.e. each column corresponds

*Note that it is thus a requirement that there be no recursive function
calls.

to a word in the NL sequence), and Cy is a K¢ x Lg vector
where L is the length of the flattened vector embedding of
helper function code. Each row in C¢ consists of the embed-
ding of a helper function, f’, in order of a left-most traversal
of the dependency graph, G, at the node corresponding to f.

As output, the architecture will generate code for each
function defined by the user in the header file. It will do
so by imitating the expert code examples. Learning takes
place through a mixture of adversarial training with pro-
vided inputs and reinforcement learning using reward aug-
mentation.

4. Model Architecture

In order to leverage reinforcement learning techniques to
train our code-creation network, we frame the problem as
an MDP using the features described above.

4.1. MDP description

Our MDP “environment”, E, has state space, S, and ac-
tion space, A, where

S=G xTS x NL x C¢ x I x Fierminal

and
A=PU {fls s ch} U {aterminate}

where TS = (ti,t,) and G, t;, to, NL, and C¢ are as above.
The only new elements are I, the code that has been writ-
ten so far in the implementation of the current function and
Frerminal, @ flag bit that denotes the function is intended to be
a complete implementation. S thus encapsulates the seman-
tic context of a software engineer choosing the contents of
function body word by word. A is thus the set of all primi-
tive operations P and the helper functions, {fi, ..., fx . }, that
can be called from the current function given the provided
interface and Qerminate 1S @ special action that denotes the end
of a function implementation. As in practice the state is of
variable length, we employ a complex embedding scheme
that yields state vectors of fixed length. Actions coming
from a fixed number of options can be represented as sim-
ple one-hot vectors.

4.2. State Embedding

Formally, given that the agent is generating code for
some function f, the state is comprised as follows

1. TS = (ti,to) (the input and output types of f, com-
prising the type signature)

2. NL (the embedded natural language description of f)

3. Cy (atuple of ASTs)

4. G (the dependency graph of the user-defined func-

tions)

I (the code written so far for the function f)

6. Ferminal (the function termination flag)

“

Queue of (h1,1.¢1,1) | (12,612 ... (h1,n.c1,n)
nodes -
LSTM_ LSTMR
¥ ¥
Imﬁjydnﬂ l |(WLLCHJ)|
node 1 node 1
L children R children
Decoded
AST,
O
Oo

Opo 4 0o 3
AST, AST, ASTK,

Y v v

Tree-LSTM encoder

by

(hy,¢q) | |(hg,c) |... (NKg, CKc) | Cyeompressed
Decoder
O () ()
Og Og Og
AST! AST' AST'K¢

Figure 3. Summary of the proposed LSTM-based state embedding architecture for Cs.

TS = (ti, to) are represented as one-hot vectors of dimen-
sion [T|, where T is the set of all available types.

To learn a compressed fixed size state for NL (which is
an ordered list of GLoVe vectors), we first train an autoen-
coder RNN penalized on reconstruction loss and take the
output state of the encoder to be the compressed represen-
tation NLg.

The dependency graph is represented as Gyqt, the flat-
tened representation of the adjacency matrix of G; impor-
tantly, we always store adjacency matrix as a matrix of size
K]é" X K]é" , and just leave entries as 0 if nodes are unused
(we will, by construction, never traverse over the unused
nodes).

C¢ by default is variable size since the ASTs are vari-
able size; we solve this problem by training a an autoen-
coder penalized on reconstruction loss; the decoded output
is the binary tree representation of the original AST, con-
verted in Left-Child Right-Sibling manner (this is done to
limit the number of LSTMs needed for decoding). The en-
coder is a Tree-LSTM, as described in [24], and the decoder
is slightly more complex; a summary of the full architecture
is illustrated in Figure 3]

The decoding process follows the method of [15]. The de-
coded tree is initialized to just a root node, associated with
output state of the the encoder Tree-LSTM, (h,c). A queue

is maintained, and the decoder iteratively pops nodes and
their state (hn,cy,) from the queue and processes the cur-
rent node to predict the existence and content of the chil-
dren; the queue is initialized with the root node. When the
decoder pops from the queue, it first computes

t,, = arg max softmax(W - h,,)

where W is a learned parameter (this corresponds to pre-
dicting the token of the current node). Two LSTMs are
maintained; LSTM and LSTMg; the the left and right
children are then given as

(h',¢') =LSTM_ r((h,c), Btn)

where B is a learned token embedding matrix mapping AST
tokens to a low dimensional space. In addition to all the
normal tokens available in the given language for the AST,
an EOS token is also included in the AST vocabulary; if the
decoder predicts that the current node is the EOS token, it
does not predict any more children. At the time that the RL
training begins, the output state of the Tree-LSTM is taken
to be the encoding of the AST. We take the final state of
Cy, CP™ ressed 1o be the ordered concatenation of all of the
output states of the elements C¢ passed through the Tree-
LSTM, each a vector of length Lg.

I is encoded as I¢°mPressed with the same autoencoder ar-
chitecture as Cy; the type checking constraint is done with
reward shaping in 4.4.

The full state then, is represented as

o a . . . (~compressed | rcompressed
S = [ti, to3 Gﬂata NL¢; Cf ;1 P > Fterminal}

4.3. Learning Environment

The state embedding of the previous section allows us
to create a policy mapping from fixed length state vectors
to discrete actions using a neural network. In order to train
this policy network, however, we require a training environ-
ment that defines the transition model of the MDP as well
the termination conditions. The transition distribution, T is
simply

1if ItJrl - It U ag and o3 7& Qterminate
P(St+l|3t7 at) =< 1if It+1 = It and At = Qterminate

0 otherwise

and the termination function is

Tif (Ftermina])t =1
Terminal(s¢) = { T if I is parsable but does not type check

1 otherwise

The environment also describes a reward model-used
for guiding the optimization of the imitation learning
objective—and this is described in more detail in the follow-
ing section.

4.4. Expert Trajectories

In order to perform imitation learning, we must also pre-
pare expert state-action pairs from the data. In our case this
is done by extracting the features of each state from the ex-
pert code base with an iterative procedure:

4.5. Imitation Learning

As there is no obvious a-priori reward function for iden-
tifying high-quality programs, we use imitation learning to
train our code generation policy. In particular, Ho and Er-
mon’s Generative Adversarial Imitation Learning (GAIL)
[10] and Li et al.’s InfoGAIL [14] is used to learn a neu-
ral network parametrized policy from the expert state-action
pairs.

The formal objective of Generative Adversarial Imitation
Learning can be stated as

min max
T De(0,1)SxA

where D is discriminator network, 7t is a policy network,
and g is the expert policy, and H = E [—log t(als)] is

Algorithm 1: Extract Expert State-Action Pairs

1
2
3
4

10
11

Input : File of code with root (main) function f;o
Output: Expert state-action pairs
pairs < ||
Extract G from function calls starting in
for do
Parse NL from function header comments and
embed
Extract TS, Cy from the code and dependency
graph and embed Cy
for do
Extract I, Fierminal, and action, a, from the code
Embed I then concatenate together TS, Gy,

ssed
NLfs C(;t)mprewe P Icompressed and Fterminal ass

Add (s,a) to the list of expert state-action pairs
end

end
return pairs

Algorithm 2: GAIL with Reward Augmentation

Input : Expert trajectories T ~ g, initial policy and
discriminator parameters 6, Wy

Output: Parameters of the policy and discriminator
networks, 0 and w

fori=0,1,2,..do

Sample trajectories T; ~ Ttg;

Update the discriminator parameters from wj to

Wi with the gradient

B, [Vy log(Diy (s, @)+ E, [V log(1—-Dsy (s, a))]

Take a policy step from 0; to 8;, using the
TRPO rule with cost function log(D.,,, (s, a)).
Specifically, take a KL.-constrained natural
gradient step with

B, [Ve log e (sla)Q(s, a)] — AVeH(mg) — A'n (7o),

where Q(S,a) =]ETi [log(Dw,,,(s,a))lsp =5,a9 = dl

end
return 6;, w;

ErllogD(s, a)]+Ex, [log(1—D(s, a))l-AH(m)

the discounted causal entropy of the policy network. This
objective is optimized using Algorithm 2,

To guide this optimization using domain knowledge, we

can incorporate reward shaping into the policy update step
as described in [14] by adding a term —A'n(7t) to the pol-
icy objective. This creates a hybrid imitation-reinforcement
learning approach.

Here, in the code generation context, we intend to in-

troduce reward shaping that encourages creation of type-
consistent and semantically correct code. More specifically,
at a given state sy, if we are able to obtain a full parse of
the current method body as currently defined in s¢ then a
positive reward Otype check 1S provided in the environment if
the generated AST passes type checking. If the program
does not type check a negative reward d— (yype check) 1S given
and the state becomes terminal. Furthermore, if test cases
are provided for the program context, any method body
that passes type checking internally and whose return type
matches the declared return type can be run on test cases and
a large positive reward bestowed on correct output. In some
cases this can only occur at the granularity of the entire pro-
gram, making it a less useful reward signal in general.

With this complex augmented objective, we can use rel-
atively standard optimization frameworks and neural archi-
tectures such as a Wasserstein GAN discriminator model
[1] and TRPO [22] with a baseline [25] and replay buffer
[[17]] for policy optimization.

4.6. Code Generation

To generate code we maintain a queue of functions to
be written and iteratively pop from the queue and run the
RL agent over the queued element. The queue is initially
populated with all functions that are nodes in the depen-
dency graph with out-degree 0; upon the RL agent finishing
processing the current element, the controller pushes to the
queue all of the parents of the current element in G that have
not been processed already. This is repeated until the entire
graph has been processed.

5. Data

In order to train the model we will propose, we need data
that meets two requirements. The first is that the code we
are training on needs to be in a fully-functional language
like Haskell or Scala. This requirement stems from the abil-
ity to be able to strongly type some basic primitive functions
and allow for the recursive construction of the full program.
The second requirement is that the code is well documented
with quality comments above each function header explain-
ing the intent of the function in natural language in order to
be able to encode the natural language into the embedding
space that the program generator will take. In particular we
would like to use the Google code base which in specific
does have Haskell and Scala code. It is also, for the most
part, guaranteed to be code of both high quality and exten-
sive commenting as a result of an extensive code review
process. Therefore we can say with a high degree of con-
fidence that the code from the Google code base is a good
source of well commented and functional code, as a result
of the stringent and clearly defined code standards they have
for their engineers before they can push to production.

At this point each program will be pre-processed into
the designated input architecture, which will look similar
to a header file. The header-like file will demarcate a few
important pieces of information. The first is a hierarchy of
prototypes of all the functions that will be used by the pro-
gram, specifically calling out which function calls another
functionf"] The next important designation made in this ar-
chitecture file is the parameter type and the return type of
the function prototype. Finally, the architecture file will also
have a natural language comment that represents the intent
of the function it is describing.

The Google code will be parsed using a simple grammar
specific for the input language and will output an architec-
ture file as specified above. One of the assumptions we will
make about the code produced is that any function specified
by the architecture file can at most call only up to K¢ other
prototypes in the file but can call as many primitive func-
tions, a safe assumption as in practice most programmers
do not call too many of their own functions for cleanliness
and will abstract further if there is a need to call that many
helper functions. This means that we will have to clean the
Google code base for any programs that contain functions
which have calls to more than K¢ helper functions. The
point of this pre-processing is to mimic the kind of input
architecture that the programmers assistant would receive
from a programmer at test time.

6. Discussion

Our system addresses a fundamental problem in software
engineering: given code structure and natural language con-
text, write the remaining pieces. However, this system is
still a few steps removed from what an actual software en-
gineer might deem useful. Importantly, our architecture re-
quires the entire code dependency graph to be known a pri-
ori. This differs from standard software engineering in a
few ways. For one, the detailed structure and decompo-
sition of all functions might not always be known before
beginning to write code: frequently, as any engineer will
point out, structure is updated and adapted on the fly when
the original designs flaws are noted. Thus, the structure fed
into our network may not be the finalized or optimal so-
lution. Additionally, design is not necessarily done to this
level of detail prior to writing the software: our network ex-
pects the entire code structure to be fleshed out up to base
functions, but in practice, only a subgraph of the DAG might
be available, and not all functions might even be known.

Fixing both of these problems, and more fundamentally,
fixing the requirement of knowing the full DAG, is not out
of reach. One might imagine an augmentation to our archi-
tecture as follows. In addition to the current available set

*This requires the program to be able to be represented as a directed
acyclic graph preventing the formation of any recursive programs

of actions, the agent could also be given the option to cre-
ate a new function with a specified type signature; in such
a case, it might be expected to also generate a natural lan-
guage description of the runtime-generated function, to al-
low the current system to be reapplied to the newly spec-
ified function. Further, the agent could also be given the
ability to modify the DAG: edge removal and edge creation
could both be added to the action set, the additional neces-
sary constraints (i.e. the graph operations should not violate
acylicity, if an edge is added f —g, then f should in fact call
g) could be implemented via improved reward shaping. The
combination of these two features relaxes the constraint of
our current system and allows for engineers to just give ap-
proximate architecture and function specifications.

The above addition also sheds light on a more promising
route if the DAG can be constantly modified and updated,
and new nodes can continue to be added, then, if an agent
were good enough, only minimal specification may be re-
quired (e.g. only top level functions might need to be spec-
ified, and the agent could infer the remainder of the struc-
ture). The limitations on implementing this approach right
now mainly revolve around search space size; the number of
possible type signatures for new functions is at least [T|'T!,
which means the action space could correspondingly get in-
tractably huge. Future research should investigate alterna-
tive methods for new function generation.

7. Conclusion

In this work, we propose a novel idea that aims to lib-
erate programmers from the minutiae of implementation.
In our framework, the human acts as the creative architect,
providing only high level design expertise in a blueprint in-
terface file. The computer agent acts as the builder, lever-
aging adversarial training and reward augmented reinforce-
ment learning to fill in function implementations.

We believe the key contributions of our framework are
the following:

e We present an end-to-end natural-language-to-code
framework that generalizes to full programs with mul-
titudes of interacting functions, rather than focusing
on smaller code snippets, which have commonly been
studied.

e We suggest an instantiation of the Programmer’s Ap-
prentice that is crafted for usability: our agent is non-
invasive, design-conscious, and familiar to program-
mers, who are already accustomed to crafting header
files and interfaces.

e Our work is among the first to describe applications of
Generative Adversarial Imitation Learning (GAIL) to
the code synthesis domain.

While the Programmer’s Apprentice problem is far from
solved, our proposed agent contributes progress to the prob-
lem, offering both code auto-implementation and design ap-
prehension.

8. Appendix

Algorithm 3: Generate Code from Policy and Spec

Input : Parameters of policy network, 6, and header
file, h
Output: h filled in with code that fits the function
descriptions
1 G = extract_dependency_graph(h)
2 for func € bottom-up_traversal(G) do

3 state = [type signature of func; flattened G, NL
description of func; C¢ for func; empty
implementation of func; 0]

4 while action # F,.,,ina do

5 action = g (state)

6 if action # Fmina then

7 | Add action to implementation of func

8 end

9 Update state

10 end

11 Add implementation in state to h
12 end

13 return h

Algorithm 4: End-to-end Procedure

Input : Expert code base, B, and header file, h
Output: A policy network that that is able to generate
code given the input header file
expert_pairs « []
for file € B do
| expert_pairs 4+ = Algorithm 1 (file)
end
0, w = Algorithm 2 (expert_pairs)
Niifled = Algorithm 3(0,h)
return hgpeq

N T R W N -

References

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(7]

[18]

(19]

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

R. Bunel, M. J. Hausknecht, J. Devlin, R. Singh, and
P. Kohli. Leveraging grammar and reinforcement learning
for neural program synthesis. 2018.
J. Cai, R. Shin, and D. X. Song.
gramming architectures generalize via recursion.
abs/1704.06611, 2017.

X. Chen, C. Liu, E. C. R. Shin, D. Song, and M. Chen.
Latent attention for if-then program synthesis. CoRR,
abs/1611.01867, 2016.

X. Chen, C. Liu, and D. Song. Tree-to-tree neural networks
for program translation. CoRR, abs/1802.03691, 2018.

X. Chen, C. Liu, and D. X. Song. Tree-to-tree neural
networks for program translation. CoRR, abs/1802.03691,
2018.

J. Cheng, S. Reddy, V. Saraswat, and M. Lapata. Learning an
executable neural semantic parser. CoRR, abs/1711.05066,
2017.

A. Cozzie and S. T. King. Macho: Writing programs with
natural language and examples. 2012.

A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare,
M. Marron, S. R, and S. Roy. Program synthesis using natu-
ral language. CoRR, abs/1509.00413, 2015.

J. Ho and S. Ermon. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Systems,
pages 4565-4573, 2016.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Program
synthesis from natural language using recurrent neural net-
works.

Making neural pro-
CoRR,

S. Jiang, A. Armaly, and C. McMillan. Automatically gen-
erating commit messages from diffs using neural machine
translation. CoRR, abs/1708.09492, 2017.

S. Z. Kyle Richardson and J. Kuhn. The code2text challenge:
Text generation in source code libraries. 2017.

Y. Li, J. Song, and S. Ermon. Infogail: Interpretable imi-
tation learning from visual demonstrations. In Advances in
Neural Information Processing Systems, pages 3815-3825,
2017.

X. V. Lin, C. Wong, D. Pang, K. Vu, L. Z. C. Xiong, and
M. D. Ernst. Program synthesis from natural language using
recurrent neural networks.

W. Ling, E. Grefenstette, K. M. Hermann, T. Kocisky, A. Se-
nior, F. Wang, and P. Blunsom. Latent predictor networks for
code generation. CoRR, abs/1603.06744, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

V. Murali, S. Chaudhuri, and C. Jermaine. Bayesian sketch
learning for program synthesis. CoRR, abs/1703.05698,
2017.

I. Polosukhin and A. Skidanov. Neural program search:
Solving programming tasks from description and examples.
CoRR, abs/1802.04335, 2018.

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

S. E. Reed and N. de Freitas. = Neural programmer-
interpreters. CoRR, abs/1511.06279, 2015.

C. Rich and R. C. Waters. The programmer’s apprentice: A
research overview. Computer, 21(11):10-25, 1988.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz.
Trust region policy optimization. In International Confer-
ence on Machine Learning, pages 1889-1897, 2015.

H. E. Shrobe, B. Katz, R. Davis, et al. Towards a program-
mer’s apprentice (again). In AAAI, pages 4062-4066, 2015.

K. S. Tai, R. Socher, and C. D. Manning. Improved semantic
representations from tree-structured long short-term memory
networks. arXiv preprint arXiv:1503.00075, 2015.

R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. In Rein-
forcement Learning, pages 5-32. Springer, 1992.

D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and
S. Savarese. Neural task programming: Learning to general-
ize across hierarchical tasks. CoRR, abs/1710.01813, 2017.

P. Yin and G. Neubig. A syntactic neural model for general-
purpose code generation. CoRR, abs/1704.01696, 2017.

V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generat-
ing structured queries from natural language using reinforce-
ment learning. CoRR, abs/1709.00103, 2017.

