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ABSTRACT

Biological episodic memory is context-dependent and reconstructive. Despite
well-documented resource constraints and inaccuracies, humans can recall richly
detailed events at varying levels of abstraction, remember individually salient fea-
tures and abstract general gists, leverage learned knowledge to form memories in
circumstances with sparse or limited information, and reconstruct and combine
parts of prior experiences to guide complex future behavior. This work presents
a computational mechanism for reconstructive memory that could enable simi-
larly selective, hierarchically feature-addressable recall. We propose an architec-
ture that integrates a recurrent neural network controller with both reconstructive
memory and a content-addressable working memory. Finally, we suggest methods
for evaluation and avenues for future research using reconstructive memory as a
baseline for memory consolidation and compositional future planning.

1 INTRODUCTION

Modern deep neural networks excel when they can learn slowly and act quickly. On tasks that
require pattern recognition or short-term decision making, such as image classification (Razavian
et al., 2014) or phrase translation (Sutskever et al.l|2014)), even relatively simple models trained on
sufficiently large datasets have proven incredibly (even unreasonably!) effective (LeCun, 2014).

In both biological and artificial neural networks, however, researchers have long suggested that
explicit, quickly-writable memory plays an important role in enabling broader intelligence (Eichen-
baum), [1993). Machines and organisms that can rapidly encode the world into memory can later
draw on those memories to learn new knowledge quickly from a few examples (McClelland et al.,
1995). Memories can allow a system to reason in complex ways over variable-like bits of informa-
tion (Feldman, 2013), or perform tasks that require storing and accessing information over longer
timescales, such as writing a computer program, reading and understanding a great but hefty novel,
or deciding how to act now, based on the experiences accumulated over a lifetime.

The idea of combining neural networks with a more rapidly writable memory is not new. Early
neural network architectures introduced the complementary learning systems framework to combat
issues of catastrophic forgetting in connectionist models, inspired by evidence that the hippocampus
and neocortex act similarly to support short and longer term learning (McClelland et al., [1995).
More recently, newer memory-augmented neural networks (Graves et al., [2016; 2014} |Sprechmann
et al., 2018 [Wayne et al.|[2018) have revived and refined methods of building deep learning systems
with external memories.

In these architectures, however, the challenges of incorporating a useful external memory system
generally fall along two largely distinct axes:

Deciding how to remember. Many recent systems formalize the problem of machine memory using
a fully differentiable Von Neumann-like architecture. In these systems, such as the Differentiable
Neural Computer and Neural Turing Machine (Graves et al., [2016; 2014)), the entire system is opti-
mized end to end to maximize reward obtained from solving a memory-intensive task, while learning
how to write and read from its external memory along the way. While successful at some tasks, the
complexity and underconstrained nature of end to end optimization can make these systems very dif-
ficult to train. Worse, a network that learns to remember only in service of immediate rewards may
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be woefully short-sighted, with no incentive to remember latent information that could be useful for
metalearning and future tasks (Wayne et al., 2018).

More recent architectures (Sprechmann et al., [2018; Wayne et al., [2018) separate the process of
encoding and using memory. Often directly inspired by evidence that the brain is composed of spe-
cialized modules optimized towards functionally diverse ends, these architectures generally lever-
age separately trained encoder networks to form memories and controller networks to select and use
them. However, when restricting how information is compressed and stored into memories, these
architectures face another challenge:

Deciding what to remember. Architectures that leverage compressive encoding for content-based
memory retrieval must balance the demands of efficient and effective content-based lookup with
domain specificity. In general, these systems must decide at the time that the memory is encoded
which details matter. Inevitably, this means that the system must risk either throwing important
details away, or face the difficulty of handling very large memories using content-based lookup. If
under-compressed, the system will need to generate more precise lookup keys to retrieve complex
memories, and may be hard pressed to generate the correct cues to recall useful information later.

In this paper, we propose combatting both of these challenges through a system capable of both
content-based and selectively reconstructive memory. While research into the neurological mech-
anisms of memory is still ongoing and far from complete, ample evidence suggests that biological
memories are both reconstructive and generative (Schacter, 2012). Specifically, we draw on two
ideas from cognitive science and neuroscience: 1. hippocampal indexing theory, which proposes
that memories can be stored as memory traces of activations in encoding neural networks, and re-
stored by reactivating those same neurons (Teyler & Rudy, |2007), and 2. evidence that encoding
networks decompose sensory information into hierarchical, discriminative features at different lay-
ers of abstraction (Zeiler & Fergus, [2014).

In our system, we propose augmenting a neural network with both a content-addressable working
memory and a longer-term reconstructive memory accessible by specifying specific subsets of en-
coding neurons that produced a memory trace. That is, the system should mitigate the tradeoff of
deciding what and how much to remember by remembering as much as possible, and then lever-
aging the hierarchically abstract structure of the encoding network to learn where in its memory to
look later on. The main contributions of this work are to:

1. Introduce a mechanism for reconstructive memory, using the same sensory network for
encoding and decoding memories.

2. Introduce a mechanism for neuronal-unit based recall using reconstructive memory, in
which a controller learns to specify which parts of a full memory trace it should recon-
struct.

3. Propose a sample integrated architecture that makes use of this memory scheme to com-
bine a reconstructive, neuronal-unit based memory and a smaller, content-based working
memory.

This paper is intended as a proposal, and focuses primarily on mechanisms for reconstructive mem-
ory storage and recall. However, there is clearly room to both further develop the model and refine
these mechanisms for practical use, and we discuss possibilities for future work at the end of the

paper.

2 SYSTEM OVERVIEW

At a high level, the model (Figure|l)) consists of two trainable components:

1. An encoder, which both encodes perceptual inputs into memory and also functions as a
reconstructive decoder, and

2. A controller, which decides how to access and use its memories.
These components interact with two memory banks:

1. A small, content-addressable working memory, and
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2. A larger bank of memory traces, accessible by specifying subsets of activations to recall in
any memory trace.

We describe these components in detail below.

Recurrent Controller Encoder Memory

Working
Memory
Chooses to:
1. Observe world directly. Forward Pass Reconstructive Reconstructive
2. Read from working memory. Encoding Decoding L. Memory

3. Read from reconstructive memory.
4. Pass output onwards.

Figure 1: The proposed model architecture, with a recurrent neural network controller, an encoder
that encodes perceptual inputs into memory and functions as a reconstructive decoder, a content-
addressable working memory, and a reconstructive memory bank.

2.1 ENCODER

In this work, as a running example, we will focus on the encoding and reconstructive recall of visual
memories. We consider an encoder network as a simple multi-layered convolutional neural network,
pre-trained on a simple object classification objective. Convolutional neural networks (CNNs) have
consistently produced excellent results on visual tasks even with relatively simple training objectives
(Krizhevsky et al.,[2012)), and evidence suggests that the dynamics of deep CNNs may resemble hier-
archical visual encoding in the human visual ventral stream (Yamins et al.,[2014). More importantly
for this work, a large body of work has demonstrated that neuronal activations at intermediate layers
of these networks can produce relatively disentangled, hierarchically abstract, and even semantically
interpretable features (Zeiler & Fergus| [2014) - for example, activations at initial layers generally
respond to semantically simple visual features such as edges and basic shapes, whereas later layers
may respond to increasingly abstract features, such as eyes or dog ears. Additionally, deconvolu-
tional methods exist to reconstructively map activities at intermediate layers back to the input pixel
space (Zeiler et al.,[2010).

More generally, however, the same idea of reconstructive decoding can be extended to encoders
for other applications (such as text decoders (Wayne et al., 2018))), and easily encompasses archi-
tectures optimized for different cost functions, such as predictive autoencoding or explicit feature
disentanglement.

2.1.1 FORWARD PASS ENCODING

To encode visual inputs, we perform a standard forward pass over a fixed size input image through
the trained encoder network. In most standard CNN architectures trained for image classification,
models are defined as a series of layers that map an input image x; to a probability vector y; over the
C different classes, where each layer consists of (i) convolution of either the initial image or the pre-
vious layer output with a set of learned filters, (ii) passing the resulting responses through a nonlinear
activation function such as a rectified linear function, and (iii) optional additional normalization and
regularization functions, such as max pooling over local image patches, batch normalization, or
neuronal dropout (Simonyan & Zisserman), 2014)).

In many standard encoding procedures, only the output of a single layer, such as the penultimate
layer of a network trained towards an image classification objective (Sprechmann et al) 2018)) or
the final layer of a network trained for predictive autoencoding (Wayne et al., |2018)), is stored as
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an image embedding. In systems that leverage compressive encoding for content-based memory
access, these embeddings are considered sufficiently rich to capture useful extracted features from
the original input image in a compact vector embedding. However, in this paper, we consider the
full activation trace of the input image through the encoding network - that is, the outputs at each
layer of the network - as a hierarchically organized memory trace. For example, if considering an
encoder implemented as the well-documented VGG-16 network, passing a single (224x224x3) im-
age tensor through the network would produce a memory trace consisting of 6 embedding tensors
of sizes ((112x112x64), (56x56x128), (28x28x256), (14x14x512), (7x7x512), (1x1x1000)), respec-
tively (Simonyan & Zisserman), 2014)).

Much as the hippocampus may store much of the full original neocortical activation pattern as
episodic memory (Teyler & Rudy) 2007), we store the entire hierarchical set of encoding layer
outputs, allowing the controller to decide later which relevant parts of the trace to reconstruct at
recall time by addressing the neuronal units that produced the trace.

Upon completion of a forward pass at time t, the resulting memory trace is stored in two separate
memory banks:

1. The full memory trace M, consisting of a tuple of layer outputs (mg,mq,...m,) in an
n-layer embedding network is stored in a long-term memory bank M,.cconstructive. 1IM-
plementations of the memory bank can vary, but the simplest implementation could be a
naive two dimensional matrix of size (N,,em, |2]), where Np,en, is the total capacity of the
memory bank and |z| is the unraveled length of the concatenated layer outputs.

If full, the memory bank can make use of eviction schemes such as FIFO, LRU, or even
a learned eviction or further consolidation scheme, which is clearly an avenue for future
research.

2. Optionally, an immediate memory embedding m, consisting of a standard image embed-
ding (such as the output of the penultimate fully connected layer of a CNN or the output of a
network trained specifically for predictive autoencoding) can be stored directly in content-
addressable working memory M.yorking Of size Nyorking, |m|. Again, working memory
bank implementations can vary, but the simplest implementation is a simple, fixed-size
two-dimensional matrix where new memory embeddings are concatenated onto the exist-
ing memory bank and old memories are evicted using any eviction scheme.

By storing full memory traces and optionally immediate memory embeddings, we allow the system
to form hierarchically detailed latent memories while still paying specific, immediate attention to the
world, written into working memory. While in this simple implementation we consider storing the
full memory trace as the set of encoding layer outputs, future work can consider refining which parts
of the memory trace to store or even running the resulting outputs through an additional compressive
or encoding module, as considered in the discussion.

2.1.2 RECONSTRUCTIVE DECODING-ENCODING

We now describe a reconstructive decoding and encoding procedure, by which specific parts of any
one memory trace can be reconstructed to form a new memory embedding highlighting those salient
features. At a high level, this method is inspired by evidence from hippocampal indexing theory
suggesting that the hippocampus may store a memory trace as pointers to the original neuron acti-
vations that fire during an episodic memory, which can then be selectively reactivated to reconstruct
relevant features of the original episode. Additionally, we aim to provide an alternative to strictly
content-based memory addressing, instead allowing the controller to learn generally which neuronal
units may correspond to relevant features for any given task - intuitively, this may both allow the
controller to lookup memories by specifying more arbitrarily abstract knowledge (hierarchically
ranging from did I see any dog at all to what was the color of the specific dogs nose, and what was in
the background, using the same visual memory trace), and allow a kind of variable-based address-
ing, whereby the controller can lookup memories by specifying neurons corresponding to specific
abstract features, and then access the actual values of those features in any given value.

Further, we use the encoder network itself to re-encode the reconstructed memory, capturing the
intuition that 1. existing learned knowledge in the encoder network informs the reconstruction of
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memory, and 2. future learning, if the encoder network is trained further, can inform the reconstruc-
tion of older memories.

Formally, we propose a reconstruction scheme for a given memory trace M; consisting of a tuple of
layer outputs (mg, my, ...m,) produced by the encoder as follows:

1. Attentional selection to specify which neurons to reconstruct. As described in 2.2.3, the
controller produces a reconstructive memory read-key vector k of size |z| which will spec-
ify as a soft attention which neurons in the memory trace we would like to reconstruct.
We can consider this key to in fact be composed of layer-wise read weighting matrices
(ko, k1, ...ky), each the size of the corresponding layer outputs in the memory trace. Cur-
rently, of course, this method produces an attention over the entire memory trace, which
may not be desirable. Future implementations could consider restricting attention to a sin-
gle or multiple layers in the original encoder, or enforce sparsity constraints on the read
key for more efficient and specific reconstruction.

2. Reconstruction as deconvolution. We draw on the well-documented deconvolutional
method (Zeiler & Fergus| |2014) to reconstruct visual memory traces as weighted mappings
of the activations in the stored memory trace back to the input pixel space.

Considering the full series of layer outputs (mg, m1,...m,), where mg is the first layer
output and m,, is the output of the final layer, we begin with the final layer m,, and work
backwards to m, performing the following operation at each layer m; to produce interme-
diate reconstruction 7;:

(a) Compute the attentionally weighted layer output at this layer m; weighted as the
element-wise product of m; and k;.

(b) Combine this with the reconstruction from the previous layer ;4 to produce m; =
mi,weighted + Tit+1-

(c) Unpooling and rectification: in networks that use pooling, we follow an unpooling
procedure as described in (Zeiler & Fergus, [2014). In networks that use RELU non-
linearities, to obtain valid feature reconstructions at each layer, we pass the recon-
structed signal thus far through a RELU nonlinearity.

(d) Filtering: we apply transposed versions of the feature maps at layer ¢ to the rectified
maps, producing an upsampled, intermediate layer output r;.

At the highest level, the resulting reconstruction 7o will be a selectively reconstructed image
mapped back to input pixel space, with the selected salient features amplified as specified
by the controller and nonsalient features masked.

3. Re-encoding. Finally, we map the reconstructed image back down to embedding space
by running a forward pass on the reconstructed image r( to produce a new reconstructed
memory embedding My cconstructed- Optionally, we could consider storing the memory
trace produced by this forward pass in our reconstructive memory bank, and the resulting
memory embedding in working memory, so that we produce an updated, recent record of
our reconstructive recall for future use.

2.2 CONTROLLER

The second trainable component of this system is a controller network, which determines how mem-
ories are accessed and used at each timestep of operation.

Specifically, we consider a recurrent controller implemented as a deep LSTM (Hochreiter &
Schmidhuber, [1997) of two hidden layers, which we describe here for completeness. At each
timestep t, the network receives an input x; of size —m;—, the size of the working memory
embedding vectors produced by the encoder network. Each layer /[ maintains a recurrent hid-
den state k! and cell state s!, which are updated recursively as follows (using o (z) = (1+exp(z)!)):

zf‘, = U(Wil[mt, hil? hil] + bi)
= a(Wilae, by, b1 + b))
sh= flst, +iltanh(W! [z, bl A1 +BL)
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Of: = U(Wé[xh hélv hil] + bé)

hl = oltanh(s!)

At each timestep, this network produces a vector /; produced by concatenating hidden state vectors
from each layer. This vector which is finally passed through a single linear layer to produce an
output LST M,,;, which can be used for action and memory selection.

We segment LST M,,; into two vectors [a¢, y+], Where a; is an action selection vector passed to a
softmax and max function to produce a one-hot vector used to select over the following four actions,
and y, is an output vector that will be used in each of these actions. The controller can decide to
perform one of the following actions at each timestep:

1. Look at the world: read a world observation from the encoder network directly into working
memory.

2. Working memory read: select memories using content-based reading from its working
memory bank.

3. Reconstructive memory read: select memories using unit-based reading from its recon-
structive memory.

4. Output redirection: pass the output vector onwards to a task-specific output network, where
it can be used to produce a final output.

‘We now describe each of these actions in detail.

2.2.1 DIRECT WORLD OBSERVATION

This action allows the controller to directly receive a world observation as input, and read this
observation into working memory. In the simplest implementation, we run a single forward pass
through the encoder as described in 2.1.1, producing a memory embedding that is written directly
into working memory and a memory trace written into reconstructive memory. Additionally, we
pass the resulting working memory embedding directly to the controller as input x4 on the next
timestep.

Optionally, future implementations could consider allowing the controller to choose how it observes
the world, even when receiving a direct world observation, using the same reconstructive memory
mechanism described later in 2.2.3. In this implementation, the output vector would be used as
described to directly control which features of the current world observation are used to produce the
final world observation embedding vector.

2.2.2 WORKING MEMORY READ

This action allows the controller to select and read memories from its content-based working mem-
ory. As in other related work (Graves et al.| 2016), we use an attentional, read-key based algorithm
to read from memory, based on the similarity between a read key and the memories stored in the
working memory bank.

To produce a read key, we pass the controller output y; through a multilayer perceptron to produce
read key k; of size |m;|, where m; is a memory embedding vector in the working memory bank.
We compute the cosine similarity between the read key and each memory m; as ¢; = cos(k, m;) =
% and then produce a normalized weighting vector of length NV,,4,4:ng Where each element is

exp(c;)

calculated as w(i] = Semp(a)-

We finally produce the working memory read as a weighted average over the entire working memory
Myorkingw, which is passed as input to the controller at the next timestep.

2.2.3 RECONSTRUCTIVE MEMORY READ

This action leverages the reconstructive decoding-encoding procedure described in 2.1.2, allowing
the controller to read from reconstructive memory by specifying - on the level of neuronal units -
which features it wants to reconstruct from memory. This read method is one of the main novelties
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of the system, and aims to capture the intuition that a controller may want to access memories not
only based on their content, but also based on the neuronal activations that may have produced the
original memory trace, leveraging the discriminative, hierarchical, and functionally specific nature
of the encoding network itself to decide what in the original memory it is looking for. Intuitively,
this also aims to give the controller control over the salient aspects of the original memory trace that
it wants to remember, instead of relying on a single, fixed encoding of the original memory. Rather,
the controller specifies what of the original memory it wishes to reconstruct, and then can access
encodings of the reconstructed memories to attend to specifically relevant details at the appropriate
level of hierarchical granularity.

We describe the simplest implementation of this method below, in which the controller may choose
to specify which over all possible encoder activations in the entire memory trace should be recon-
structed. In practice, this may prove overly general, and future work should aim to further refine
the controller reconstructive memory read process - for example, by perhaps restricting attention to
specific layers or hierarchical subsets of activations in the memory trace, by further preprocessing
the memory trace to compress the trace further, or even by using other cached read vectors (say,
other memories) to parameterize in advance which subsets of activations to reconstruct, so that over
time, the system can remember how to remember.

Even in the most naive case, where the controller can read over the full memory trace, additional
experimentation remains to determine at what stage memories should be read and reconstructed.
For example, we could imagine producing a read key over the memory trace in which we preselect
memories that already showed high activation in the desired units, and then only reconstructing these
most salient memories. Alternatively, we could imagine introducing a recency heuristic, in which
the controller instead searches over its most recent memories, reconstructing the specified units and
then using another metric, like a second content-based read key, to decide whether the reconstructed
memory is relevant. In either case, we produce an attentional, reconstructive read key over all acti-
vations in a full memory trace by passing the controller output y; through a multilayer perceptron
to produce reconstructive key k] of size |z|, where |z| is the size of the unraveled memory trace
as described in 2.1.1. In the former preselection case, we can either produce a weight vector over
the full reconstructive memory bank used to then reconstruct and combine memories (or simply the
top n memories) based on cosine similarity to the read key as described in 2.2.2, or alternatively,
we can imagine iteratively considering reconstructed memories based on their cosine similarity, in
which we sequentially choose the most relevant memory to reconstruct, produce a reconstructive
embedding My econstructed @S described in 2.1.2, and then pass this memory to the controller as the
input at the next timestep. This latter method could reduce the number of relatively expensive mem-
ory reconstructions, and allow the controller to decide, based on the memory, whether additional
memory reconstructions were necessary.

2.2.4 OUTPUT REDIRECTION

This action allows the controller to produce a domain-specific output, such as a movement in the
world. We consider the simplest case where the entire system is being trained for a single task at a
time, and there is only one domain-specific output network; of course, this can easily be extended to
allow the controller to choose from any number of separate domain-specific output networks.

We simply pass the output vector y; to the domain-specific output network, which produces the
appropriate task output as part of downstream processing. For example, in the case where the task is
to produce some movement in an environment, this network may be a two layer MLP, which projects
to the logits of a multinomial softmax with the dimensionality of the movement space where we can
then sample an output movement.

At the next time step, we also default to making another direct world observation as described in
2.2.1, allowing the controller to observe the impact of its output in the world. Depending on the
domain, we may also wish to pass the results of the output network itself to the controller network
at the next timestep, which we leave as a task-specific implementation detail.
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3 EXPERIMENTS AND EVALUATION

This paper focuses on mechanisms for reconstructive memory storage and recall, and is intended
primarily as a computational architecture proposal. However, the recent explosion of effective ma-
chine learning models has only intensified the need for challenging, specific evaluation metrics to
test comprehension. In artificial intelligence, as in human psychology, testing on insufficiently nar-
row or poorly controlled tasks can be doubly susceptible to failure - we can wind up both unclear
what the system has actually learned (Yang et al., |2018)), and unsuspecting of future corner cases
(Papernot et al., 2016). Good task design can highlight the difference between human learning and
Clever Hans (Samhita & Gross|, [2013).

In this section, we therefore draw on the rich history of tasks in computer vision and cognitive
science to suggest several evaluation benchmarks that could be appropriate to test aspects of a hi-
erarchically feature-accessible, detailed, reconstructive memory system. These tasks are intended
to highlight desirable features of any complex visual memory system, and may provide a useful
baseline for future models.

Long term visual memory tasks. While human memory is imprecise and error prone, our ability
to retain detailed and discriminative long-term visual memories can be remarkably high. Brady et.
al demonstrated that under certain conditions, humans can recall a massive number of objects in
surprising visual detail (Brady et al., 2008). We propose variations of the same tasks to compare
against baseline systems in which straightforward content-based lookup of nonreconstructive visual
embeddings should fail - a system that overnormalizes in advance to correct against invariances
should be insufficiently discriminative, and a system that did not normalize in advance should be
unable to perform more abstract recall. Instead, the following battery of tasks should reward salient,
feature-based lookup: after exposure to a large quantity of visual images, Brady et. al evaluate
human ability to discriminate between previously-seen objects and unseen objects under:

1. A novel condition: an old item paired with a new, categorically distinct item.

2. An exemplar condition: an old item paired with a physically similar new item from the
same basic level category.

3. A state condition: an old item paired with a visually identical new item in a different state
or pose.

Challenging visual comprehension tasks. A system that can reconstruct and recall memories with
varying levels of visual detail may be better equipped to handle complex visual comprehension
tasks, including tasks that require tracking complex scenes over time, and answering arbitrarily de-
tailed queries. A number of emerging datasets attempt to test complex visual reasoning: the CLEVR
dataset (Johnson et al.,[2017)) tests compositional language and visual reasoning in highly-controlled,
computer generated scenes, and the COG dataset (Yang et al.,2018]) tests visual reasoning about im-
age sequences over time, with distractors present. Converted into memory tasks, either dataset may
provide useful benchmarks to test visual recall over time. While both datasets use computer gener-
ated images to control for superficial statistical biases, we also suggest developing more controlled
real-world scene comprehension benchmarks to test richer visual recall.

Additionally, reconstructive memory may boost performance on video comprehension tasks, such as
the Moments in Time (Monfort et al., 2018) or MovieQA story understanding benchmarks (Tapaswi
et al.,[2016), or on video summarization.

Sparse information and new information reconstructive memory tasks. More generally, a visual
system augmented with reconstructive memory should be able to recall and make sense of visual
memories given limited information (reconstructed memories should leverage prior and general
knowledge to describe what was probably present given sparse visual details), and to incorporate
information learned later when recalling past events.

Castelhano and Henderson (Castelhano & Hendersonl, [2003) describe a flash preview and moving
window experiment to test the ability of human subjects to use abstract cues learned after initially
previewing a scene, such as a target word, to guide visual search with a narrow field of view. More
primitively, reconstructive memory could improve performance on visual question answering tasks
that require integrating multiple perspectives of the same scene, in which accessing abstract infor-
mation later could aid comprehension and recall. The classic Heider-Simmel illusion (Heider &
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Simmel} |1944) demonstrates human ability to tell rich stories about simple scenes; a more limited
task inspired by this test could test the ability of computer systems to generate detailed captions of
scenes with missing or limited details.

Finally, we suggest that computational models with reconstructive memory might offer a better
model of human biological memory. Prior work in psychology and cognitive science has leveraged
advances in computer vision to track human decay of visual representations (V0 et al.,[2017)), predict
image memorability (Khosla et al.,|2015)), and study dynamics of scene representation in the human
brain (Cichy et al., 2016). Models augmented with more human-like recall systems could provide a
better baseline architecture to model and evaluate human memory.

4 FOUNDATIONAL RESEARCH AND RELATED WORK

4.1 BIOLOGICAL MEMORY

Biological memory is no mere record of the past. It is both more and less; evolving and sometimes
conflicting research suggests that human memory can be both detailed and error-prone, specific
and context-dependent, reconstructive and fundamentally constructive. At both short and longer
timescales, biological memory may be critical to human-like behavior, enabling rich and complex
reasoning.

Over shorter timescales, psychology and neuroscience has developed the concept of fast-writable
working memory as a capacity-limited (Miller, |1956) but critical component of logical reasoning,
fundamental to tasks that require short-term manipulation of prior information (Kyllonen & Christal,
1990). Under the influential central executive paradigm, a central coordinating system maintains
and updates information stored across discrete and interacting systems, enabling complex cognitive
abilities such as symbol-like and variable-binding behavior (Baddeley, |1992).

More generally, modern evidence depicts human episodic memory as fundamentally constructive
(Bartlett, | 1920)), subject both to rich and context-dependent recall, but also various errors and de-
tailed but highly-inaccurate illusions. Despite these imperfections and obvious capacity limitations,
humans can selectively recall a massive number of objects, events, and concepts at hierarchical and
arbitrary levels of abstraction and detail (Brady et al., 2008)). Biological episodic memory clearly
does not entail a simple replay of the past. Instead, its constructive nature may allow both compres-
sive storage and play a critical role in adaptive, selectively useful recall - the future does not precisely
replay the past, and composing bits and pieces of prior episodes may allow more flexible and even
recombinatory memory that allows humans to imagine, simulate, or pre-experience episodes in the
future (Schacter & Addis, 2007). Indeed, the ability to reconstruct arbitrary and specific information
at varying levels of detail may be critical for broader comprehension and adaptive transfer learning,
and generalization; our ability to remember both individual details and a more general gist of past
events may be critical to fast recall and abstract generalization (McClelland, |1995;|Oliva, 2005).

This paper also draws on a rich history of neuroscientific theory and evidence as to the specifics
of memory representation, storage, update, and retrieval mechanisms that might enable both fast-
writable working memory and reconstructive recall. Hippocampal indexing theory (Teyler & Rudy,
2007) suggests that the hippocampus captures memories as an index of neocortical activity at the
time of experience, and can serve as an index to project and reactivate patterns in the neocortex
based on selective and partial cues. Indeed, theories of experience replay suggest that reactivation
of memory traces can reinstate cortical circuit activity during wake and sleep (ONeill et al.,[2010).
These episodic memories may be subject to ongoing transformations that reflect dynamic updates
in the hippocampus and in the substrates that produced those original memories (Moscovitch et al.}
2016), as well as consolidatory processes over short and lifelong timescales (Dudai et al.| [2015).

4.2 MEMORY-AUGMENTED COMPUTER ARCHITECTURES

This proposal draws on many prior computer architectures that combine neural networks and exter-
nal memories stored and optimized under different conditions than a centrally-executing controller
network. Many of these architectures are explicitly informed by theories of biological memory,
and attempt to combat issues of learning in neural networks, capture critical functions of complex
reasoning and logical behaviors, and model aspects of human episodic and working memory. We
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draw inspiration from computational models of complementary learning systems (McClelland et al.,
19935)) in the neocortex and hippocampus to interleave fast and slow learning of information, the
related Memory-based Parameter Adaptation model of a context-dependent recall and dynamically
trainable adaptive controller (Sprechmann et al.| [2018)), reinforcement learning systems that directly
make use of episodic reactivation through a stored experience replay buffer (Mnih et al.,2013), and
the classic LSTM model of gated long and short term memory (Hochreiter & Schmidhuber, |1997).
Additionally, we build off recent attempts to build fully differentiable, trainable Von Neumann-like
architectures such as Neural Turing Machine (Graves et al., [2014) and related Differential Neural
Computer (Graves et al.l [2016), and models that store compressed episode representations using a
predictive encoder (Wayne et al., 2018)). These architectures present concrete memory-based im-
plementations and intriguing evidence of how memory can enable complex learning, in a rapidly
developing area that continues to evolve alongside our understanding of biological and computa-
tional memory.

5 DISCUSSION

This paper introduces a mechanism for reconstructive memory in artificial neural networks, and
a preliminary architecture to integrate both unit-addressable reconstructive memory and content-
addressable working memory. We draw on both biological and computational precedent, and pro-
pose that reconstructive memories may allow more complex, abstract recall.

To conclude, however, we turn briefly to the question of whether augmenting computer systems
with a reconstructive memory is necessarily even desirable, and suggest both avenues for caution
and intriguing future work. Human memory is notoriously fallible, and the same aspects that make
reconstructive memory powerful - its ability to draw on prior expectation to reconstruct rich mem-
ories from sparse information, and to contextually control which parts of a memory are salient for
recall - can make it prone to bias, manipulation, and catastrophic error (Schacter & Addis|, 2007)).
When introducing a reconstructive aspect to computational recall, we must take enormous care to
weigh potential tradeoffs in the interpretability and accuracy of reconstructed memory, ensure that
systems do not reinforce their own biases endlessly in restricted learned lookup procedures, and can
check their own memory against truth to ensure that a reconstructed memory does not introduce
problematic errors. As neuroscientists and engineers alike point out, we should not handicap our
electronic machines by blindly emulating biology (Russell & Norvig| [2016). A computer scientist
who can hardly remember what she ate for breakfast yesterday may not wish to build a machine
that cannot remember either. Perhaps reconstructive memory has no place in a system with vast or
unbounded storage and lookup, and is simply an evolutionary trick to hide the limited capacity of a
resource-constrained mind.

As described earlier, however, this work is motivated by the hope that a selectively reconstructive
memory may be more compositional, contextually relevant, and flexible, leveraging the power of a
controller to remember arbitrarily abstract concepts that leverage prior knowledge and learned infor-
mation. Additionally, along with the immediate avenues for future refinement described throughout
the paper to improve encoding and decoding, the same basic mechanism may lay the groundwork
for more interesting innovations, such as modeling lifelong memory consolidation and imagina-
tion. While prior work on computational and biological memory consolidation focuses heavily on
gradual integration of hippocampal information into a neural network or the neocortex (McClelland
et al.,|1995)), the proposed memory trace structure could also model memory consolidation through
compression and sparsification of the memory traces themselves, perhaps through a process of re-
encoding similar to learned weight distillation (Hinton et al., |2015). On the opposite end of the
spectrum, future work could leverage the generative nature of reconstructive memory more fully as
a form of forward-thinking imagination - a controller that learns to selectively choose parts of mem-
ories to reconstruct could instead choose to compose features from disparate memories to construct
a wholly new imagined concept, or even to choose to selectively pass features from one memory to
be reconstructed in a different decoding network. Clearly, there is plenty of room for future research.
We hope this proposal serves as a preliminary but useful building block for computational models
of memory whose richness, complexity, and flexibility can parallel and shed light on our own.
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