
About Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent
Neural Networks
May 21, 2015

There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I
trained my first recurrent network for Image Captioning. Within a few dozen minutes of training
my first baby model (with rather arbitrarily-chosen hyperparameters) started to generate very
nice looking descriptions of images that were on the edge of making sense. Sometimes the
ratio of how simple your model is to the quality of the results you get out of it blows past your
expectations, and this was one of those times. What made this result so shocking at the time
was that the common wisdom was that RNNs were supposed to be difficult to train (with more
experience I’ve in fact reached the opposite conclusion). Fast forward about a year: I’m training
RNNs all the time and I’ve witnessed their power and robustness many times, and yet their
magical outputs still find ways of amusing me. This post is about sharing some of that magic
with you.

By the way, together with this post I am also releasing code on Github that allows you to train
character-level language models based on multi-layer LSTMs. You give it a large chunk of text
and it will learn to generate text like it one character at a time. You can also use it to reproduce
my experiments below. But we’re getting ahead of ourselves; What are RNNs anyway?

Recurrent Neural Networks
Sequences. Depending on your background you might be wondering: What makes Recurrent
Networks so special? A glaring limitation of Vanilla Neural Networks (and also Convolutional
Networks) is that their API is too constrained: they accept a fixed-sized vector as input (e.g. an
image) and produce a fixed-sized vector as output (e.g. probabilities of different classes). Not
only that: These models perform this mapping using a fixed amount of computational steps
(e.g. the number of layers in the model). The core reason that recurrent nets are more exciting

We’ll train RNNs to generate text character by character and ponder the question “how is that
even possible?”

Andrej Karpathy blog

http://karpathy.github.io/feed.xml
http://karpathy.github.io/about/
http://karpathy.github.io/neuralnets/
http://cs.stanford.edu/people/karpathy/deepimagesent/
https://github.com/karpathy/char-rnn
http://karpathy.github.io/

is that they allow us to operate over sequences of vectors: Sequences in the input, the output,
or in the most general case both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red,
output vectors are in blue and green vectors hold the RNN's state (more on this soon). From left to right: (1)
Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g. image
classification). (2) Sequence output (e.g. image captioning takes an image and outputs a sentence of
words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing
positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN
reads a sentence in English and then outputs a sentence in French). (5) Synced sequence input and output
(e.g. video classification where we wish to label each frame of the video). Notice that in every case are no
pre-specified constraints on the lengths sequences because the recurrent transformation (green) is fixed
and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful compared to
fixed networks that are doomed from the get-go by a fixed number of computational steps, and
hence also much more appealing for those of us who aspire to build more intelligent systems.
Moreover, as we’ll see in a bit, RNNs combine the input vector with their state vector with a
fixed (but learned) function to produce a new state vector. This can in programming terms be
interpreted as running a fixed program with certain inputs and some internal variables. Viewed
this way, RNNs essentially describe programs. In fact, it is known that RNNs are Turing-
Complete in the sense that they can to simulate arbitrary programs (with proper weights). But
similar to universal approximation theorems for neural nets you shouldn’t read too much into
this. In fact, forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having
sequences as inputs or outputs could be relatively rare, but an important point to realize is that
even if your inputs/outputs are fixed vectors, it is still possible to use this powerful formalism to
process them in a sequential manner. For instance, the figure below shows results from two

If training vanilla neural nets is optimization over functions, training recurrent nets is
optimization over programs.

http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf

very nice papers from DeepMind. On the left, an algorithm learns a recurrent network policy
that steers its attention around an image; In particular, it learns to read out house numbers from
left to right (Ba et al.). On the right, a recurrent network generates images of digits by learning
to sequentially add color to a canvas (Gregor et al.):

Left: RNN learns to read house numbers. Right: RNN learns to paint house numbers.

The takeaway is that even if your data is not in form of sequences, you can still formulate and
train powerful models that learn to process it sequentially. You’re learning stateful programs that
process your fixed-sized data.

RNN computation. So how do these things work? At the core, RNNs have a deceptively simple
API: They accept an input vector x and give you an output vector y . However, crucially this
output vector’s contents are influenced not only by the input you just fed in, but also on the
entire history of inputs you’ve fed in in the past. Written as a class, the RNN’s API consists of a
single step function:

rnn = RNN()
y = rnn.step(x) # x is an input vector, y is the RNN's output vector

The RNN class has some internal state that it gets to update every time step is called. In the
simplest case this state consists of a single hidden vector h . Here is an implementation of the
step function in a Vanilla RNN:

http://deepmind.com/
http://arxiv.org/abs/1412.7755
http://arxiv.org/abs/1502.04623

class RNN:
 # ...
 def step(self, x):
 # update the hidden state
 self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
 # compute the output vector
 y = np.dot(self.W_hy, self.h)
 return y

The above specifies the forward pass of a vanilla RNN. This RNN’s parameters are the three
matrices W_hh, W_xh, W_hy . The hidden state self.h is initialized with the zero vector.
The np.tanh function implements a non-linearity that squashes the activations to the range
[-1, 1] . Notice briefly how this works: There are two terms inside of the tanh: one is based

on the previous hidden state and one is based on the current input. In numpy np.dot is
matrix multiplication. The two intermediates interact with addition, and then get squashed by
the tanh into the new state vector. If you’re more comfortable with math notation, we can also
write the hidden state update as , where tanh is applied
elementwise.

We initialize the matrices of the RNN with random numbers and the bulk of work during training
goes into finding the matrices that give rise to desirable behavior, as measured with some loss
function that expresses your preference to what kinds of outputs y you’d like to see in
response to your input sequences x .

Going deep. RNNs are neural networks and everything works monotonically better (if done
right) if you put on your deep learning hat and start stacking models up like pancakes. For
instance, we can form a 2-layer recurrent network as follows:

y1 = rnn1.step(x)
y = rnn2.step(y1)

In other words we have two separate RNNs: One RNN is receiving the input vectors and the
second RNN is receiving the output of the first RNN as its input. Except neither of these RNNs
know or care - it’s all just vectors coming in and going out, and some gradients flowing through
each module during backpropagation.

Getting fancy. I’d like to briefly mention that in practice most of us use a slightly different
formulation than what I presented above called a Long Short-Term Memory (LSTM) network.
The LSTM is a particular type of recurrent network that works slightly better in practice, owing
to its more powerful update equation and some appealing backpropagation dynamics. I won’t
go into details, but everything I’ve said about RNNs stays exactly the same, except the

= tanh(+)ht Whhht−1 Wxhxt

mathematical form for computing the update (the line self.h = ...) gets a little more
complicated. From here on I will use the terms “RNN/LSTM” interchangeably but all
experiments in this post use an LSTM.

Character-Level Language Models
Okay, so we have an idea about what RNNs are, why they are super exciting, and how they
work. We’ll now ground this in a fun application: We’ll train RNN character-level language
models. That is, we’ll give the RNN a huge chunk of text and ask it to model the probability
distribution of the next character in the sequence given a sequence of previous characters.
This will then allow us to generate new text one character at a time.

As a working example, suppose we only had a vocabulary of four possible letters “helo”, and
wanted to train an RNN on the training sequence “hello”. This training sequence is in fact a
source of 4 separate training examples: 1. The probability of “e” should be likely given the
context of “h”, 2. “l” should be likely in the context of “he”, 3. “l” should also be likely given the
context of “hel”, and finally 4. “o” should be likely given the context of “hell”.

Concretely, we will encode each character into a vector using 1-of-k encoding (i.e. all zero
except for a single one at the index of the character in the vocabulary), and feed them into the
RNN one at a time with the step function. We will then observe a sequence of 4-dimensional
output vectors (one dimension per character), which we interpret as the confidence the RNN
currently assigns to each character coming next in the sequence. Here’s a diagram:

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This
diagram shows the activations in the forward pass when the RNN is fed the characters "hell" as input. The

output layer contains confidences the RNN assigns for the next character (vocabulary is "h,e,l,o"); We want
the green numbers to be high and red numbers to be low.

For example, we see that in the first time step when the RNN saw the character “h” it assigned
confidence of 1.0 to the next letter being “h”, 2.2 to letter “e”, -3.0 to “l”, and 4.1 to “o”. Since in
our training data (the string “hello”) the next correct character is “e”, we would like to increase
its confidence (green) and decrease the confidence of all other letters (red). Similarly, we have
a desired target character at every one of the 4 time steps that we’d like the network to assign
a greater confidence to. Since the RNN consists entirely of differentiable operations we can run
the backpropagation algorithm (this is just a recursive application of the chain rule from
calculus) to figure out in what direction we should adjust every one of its weights to increase
the scores of the correct targets (green bold numbers). We can then perform a parameter
update, which nudges every weight a tiny amount in this gradient direction. If we were to feed
the same inputs to the RNN after the parameter update we would find that the scores of the
correct characters (e.g. “e” in the first time step) would be slightly higher (e.g. 2.3 instead of
2.2), and the scores of incorrect characters would be slightly lower. We then repeat this
process over and over many times until the network converges and its predictions are
eventually consistent with the training data in that correct characters are always predicted next.

A more technical explanation is that we use the standard Softmax classifier (also commonly
referred to as the cross-entropy loss) on every output vector simultaneously. The RNN is trained
with mini-batch Stochastic Gradient Descent and I like to use RMSProp or Adam (per-
parameter adaptive learning rate methods) to stablilize the updates.

Notice also that the first time the character “l” is input, the target is “l”, but the second time the
target is “o”. The RNN therefore cannot rely on the input alone and must use its recurrent
connection to keep track of the context to achieve this task.

At test time, we feed a character into the RNN and get a distribution over what characters are
likely to come next. We sample from this distribution, and feed it right back in to get the next
letter. Repeat this process and you’re sampling text! Lets now train an RNN on different
datasets and see what happens.

To further clarify, for educational purposes I also wrote a minimal character-level RNN language
model in Python/numpy. It is only about 100 lines long and hopefully it gives a concise,
concrete and useful summary of the above if you’re better at reading code than text. We’ll now
dive into example results, produced with the much more efficient Lua/Torch codebase.

Fun with RNNs

http://arxiv.org/abs/1502.04390
https://gist.github.com/karpathy/d4dee566867f8291f086

All 5 example character models below were trained with the code I’m releasing on Github. The
input in each case is a single file with some text, and we’re training an RNN to predict the next
character in the sequence.

Paul Graham generator
Lets first try a small dataset of English as a sanity check. My favorite fun dataset is the
concatenation of Paul Graham’s essays. The basic idea is that there’s a lot of wisdom in these
essays, but unfortunately Paul Graham is a relatively slow generator. Wouldn’t it be great if we
could sample startup wisdom on demand? That’s where an RNN comes in.

Concatenating all pg essays over the last ~5 years we get approximately 1MB text file, or about
1 million characters (this is considered a very small dataset by the way). Technical: Lets train a
2-layer LSTM with 512 hidden nodes (approx. 3.5 million parameters), and with dropout of 0.5
after each layer. We’ll train with batches of 100 examples and truncated backpropagation
through time of length 100 characters. With these settings one batch on a TITAN Z GPU takes
about 0.46 seconds (this can be cut in half with 50 character BPTT at negligible cost in
performance). Without further ado, lets see a sample from the RNN:

“The surprised in investors weren’t going to raise money. I’m not the company with the time
there are all interesting quickly, don’t have to get off the same programmers. There’s a super-
angel round fundraising, why do you can do. If you have a different physical investment are
become in people who reduced in a startup with the way to argument the acquirer could see
them just that you’re also the founders will part of users’ affords that and an alternation to the
idea. [2] Don’t work at first member to see the way kids will seem in advance of a bad
successful startup. And if you have to act the big company too.”

Okay, clearly the above is unfortunately not going to replace Paul Graham anytime soon, but
remember that the RNN had to learn English completely from scratch and with a small dataset
(including where you put commas, apostrophes and spaces). I also like that it learns to support
its own arguments (e.g. [2], above). Sometimes it says something that offers a glimmer of
insight, such as “a company is a meeting to think to investors”. Here’s a link to 50K character
sample if you’d like to see more.

Temperature. We can also play with the temperature of the Softmax during sampling.
Decreasing the temperature from 1 to some lower number (e.g. 0.5) makes the RNN more
confident, but also more conservative in its samples. Conversely, higher temperatures will give
more diversity but at cost of more mistakes (e.g. spelling mistakes, etc). In particular, setting
temperature very near zero will give the most likely thing that Paul Graham might say:

https://github.com/karpathy/char-rnn
http://www.paulgraham.com/articles.html
http://cs.stanford.edu/people/karpathy/char-rnn/pg.txt

“is that they were all the same thing that was a startup is that they were all the same thing that
was a startup is that they were all the same thing that was a startup is that they were all the
same”

looks like we’ve reached an infinite loop about startups.

Shakespeare
It looks like we can learn to spell English words. But how about if there is more structure and
style in the data? To examine this I downloaded all the works of Shakespeare and
concatenated them into a single (4.4MB) file. We can now afford to train a larger network, in
this case lets try a 3-layer RNN with 512 hidden nodes on each layer. After we train the network
for a few hours we obtain samples such as:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Remember, all the RNN knows are characters, so in particular it samples both speaker’s names
and the contents. Sometimes we also get relatively extented monologue passages, such as:

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

I can barely recognize these samples from actual Shakespeare :) If you like Shakespeare, you
might appreciate this 100,000 character sample. Of course, you can also generate an infinite
amount of your own samples at different temperatures with the provided code.

Wikipedia
We saw that the LSTM can learn to spell words and copy general syntactic structures. Lets
further increase the difficulty and train on structured markdown. In particular, lets take the
Hutter Prize 100MB dataset of raw Wikipedia and train an LSTM. Following Graves et al., I used
the first 96MB for training, the rest for validation and ran a few models overnight. We can now
sample Wikipedia articles! Below are a few fun excerpts. First, some basic markdown output:

Naturalism and decision for the majority of Arab countries' capitalide was
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], a
with Guangzham's sovereignty. His generals were the powerful ruler of the P
in the [[Protestant Immineners]], which could be said to be directly in Can
Communication, which followed a ceremony and set inspired prison, training
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Ki
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]]
in western [[Scotland]], near Italy to the conquest of India with the confl
Copyright was the succession of independence in the slop of Syrian influenc

http://cs.stanford.edu/people/karpathy/char-rnn/shakespear.txt
http://prize.hutter1.net/
http://arxiv.org/abs/1308.0850

In case you were wondering, the yahoo url above doesn’t actually exist, the model just
hallucinated it. Also, note that the model learns to open and close the parenthesis correctly.
There’s also quite a lot of structured markdown that the model learns, for example sometimes it
creates headings, lists, etc.:

Sometimes the model snaps into a mode of generating random but valid XML:

<page>
 <title>Antichrist</title>

was a famous German movement based on a more popular servicious, non-doctri
and sexual power post. Many governments recognize the military housing of t
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungar
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, M
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]

{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|non
''www.e-complete''.

'''See also''': [[List of ethical consent processing]]

== See also ==
*[[Iender dome of the ED]]
*[[Anti-autism]]

===[[Religion|Religion]]===
*[[French Writings]]
*[[Maria]]
*[[Revelation]]
*[[Mount Agamul]]

== External links==
* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival

==External links==
* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic

http://www.humah.yahoo.com/guardian
http://www.e-complete/
http://www.biblegateway.nih.gov/entrepre/
http://www.romanology.com/

 <id>865</id>
 <revision>
 <id>15900676</id>
 <timestamp>2002-08-03T18:14:12Z</timestamp>
 <contributor>
 <username>Paris</username>
 <id>23</id>
 </contributor>
 <minor />
 <comment>Automated conversion</comment>
 <text xml:space="preserve">#REDIRECT [[Christianity]]</text>
 </revision>
</page>

The model completely makes up the timestamp, id, and so on. Also, note that it closes the
correct tags appropriately and in the correct nested order. Here are 100,000 characters of
sampled wikipedia if you’re interested to see more.

Algebraic Geometry (Latex)
The results above suggest that the model is actually quite good at learning complex syntactic
structures. Impressed by these results, my labmate (Justin Johnson) and I decided to push
even further into structured territories and got a hold of this book on algebraic stacks/geometry.
We downloaded the raw Latex source file (a 16MB file) and trained a multilayer LSTM.
Amazingly, the resulting sampled Latex almost compiles. We had to step in and fix a few issues
manually but then you get plausible looking math, it’s quite astonishing:

http://cs.stanford.edu/people/karpathy/char-rnn/wiki.txt
http://cs.stanford.edu/people/jcjohns/
http://stacks.math.columbia.edu/

Sampled (fake) algebraic geometry. Here's the actual pdf.

Here’s another sample:

More hallucinated algebraic geometry. Nice try on the diagram (right).

As you can see above, sometimes the model tries to generate latex diagrams, but clearly it
hasn’t really figured them out. I also like the part where it chooses to skip a proof (“Proof
omitted.”, top left). Of course, keep in mind that latex has a relatively difficult structured

http://cs.stanford.edu/people/jcjohns/fake-math/4.pdf

syntactic format that I haven’t even fully mastered myself. For instance, here is a raw sample
from the model (unedited):

\begin{proof}
We may assume that \mathcal{I} is an abelian sheaf on \mathcal{C}.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on X.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let \mathcal{F} be an abelian quasi-coherent sheaf on \mathcal{C}.
Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then
\mathcal{F} is an abelian catenary over \mathcal{C}.
\item The following are equivalent
\begin{enumerate}
\item \mathcal{F} is an \mathcal{O}_X-module.
\end{lemma}

This sample from a relatively decent model illustrates a few common mistakes. For example,
the model opens a \begin{proof} environment but then ends it with a \end{lemma} . This
is an example of a problem we’d have to fix manually, and is likely due to the fact that the
dependency is too long-term: By the time the model is done with the proof it has forgotten
whether it was doing a proof or a lemma. Similarly, it opens an \begin{enumerate} but then
forgets to close it. We observed that these became less common with larger/better models, but
nonetheless, these are the kinds of mistakes that come up.

Linux Source Code
I wanted to push structured data to its limit, so for the final challenge I decided to use code. In
particular, I took all the source and header files found in the Linux repo on Github,
concatenated all of them in a single giant file (474MB of C code) (I was originally going to train
only on the kernel but that by itself is only ~16MB). Then I trained several as-large-as-fits-on-
my-GPU 3-layer LSTMs over a period of a few days. These models have about 10 million
parameters, which is still on the lower end for RNN models. The results are superfun:

/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)

https://github.com/torvalds/linux

The code looks really quite great overall. Of course, I don’t think it compiles but when you scroll
through the generate code it feels very much like a giant C code base. Notice that the RNN
peppers its code with comments here and there at random. It is also very good at making very
few syntactic errors. For example, it uses strings properly, pointer notation, etc. It also opens
and closes brackets {[correctly and learns to indent its code very well. A common error is
that it can’t keep track of variable names: It often uses undefined variables (e.g. rw above),
declares variables it never uses (e.g. int error), or returns non-existing variables. Lets see
a few more examples. Here’s another snippet that shows a wider array of operations that the
RNN learns:

/*
 * If this error is set, we will need anything right after that BSD.
 */
static void action_new_function(struct s_stat_info *wb)

{
 int error;
 if (fd == MARN_EPT) {
 /*
 * The kernel blank will coeld it to userspace.
 */
 if (ss->segment < mem_total)
 unblock_graph_and_set_blocked();
 else
 ret = 1;
 goto bail;
 }
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup_works = true;
 for (i = 0; i < blocks; i++) {
 seq = buf[i++];
 bpf = bd->bd.next + i * search;
 if (fd) {
 current = blocked;
 }
 }
 rw->name = "Getjbbregs";
 bprm_self_clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SEC
 return segtable;
}

{
 unsigned long flags;
 int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN_WARNING "Memory allocated %02x/%02x, "
 "original MLL instead\n"),
 min(min(multi_run - s->len, max) * num_data_in),
 frame_pos, sz + first_seg);
 div_u64_w(val, inb_p);
 spin_unlock(&disk->queue_lock);
 mutex_unlock(&s->sock->mutex);
 mutex_unlock(&func->mutex);
 return disassemble(info->pending_bh);
}

static void num_serial_settings(struct tty_struct *tty)
{
 if (tty == tty)
 disable_single_st_p(dev);
 pci_disable_spool(port);
 return 0;
}

static void do_command(struct seq_file *m, void *v)
{
 int column = 32 << (cmd[2] & 0x80);
 if (state)
 cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
 else
 seq = 1;
 for (i = 0; i < 16; i++) {
 if (k & (1 << 1))
 pipe = (in_use & UMXTHREAD_UNCCA) +
 ((count & 0x00000000fffffff8) & 0x000000f) << 8;
 if (count == 0)
 sub(pid, ppc_md.kexec_handle, 0x20000000);
 pipe_set_bytes(i, 0);
 }
 /* Free our user pages pointer to place camera if all dash */
 subsystem_info = &of_changes[PAGE_SIZE];
 rek_controls(offset, idx, &soffset);
 /* Now we want to deliberately put it to device */
 control_check_polarity(&context, val, 0);

 for (i = 0; i < COUNTER; i++)
 seq_puts(s, "policy ");
}

Notice that in the second function the model compares tty == tty , which is vacuously true.
On the other hand, at least the variable tty exists in the scope this time! In the last function,
notice that the code does not return anything, which happens to be correct since the function
signature is void . However, the first two functions were also declared void and did return
values. This is again a form of a common mistake due to long-term interactions.

Sometimes the model decides that it’s time to sample a new file. This is usually a very amusing
part: The model first recites the GNU license character by character, samples a few includes,
generates some macros and then dives into the code:

/*
 * Copyright (c) 2006-2010, Intel Mobile Communications. All rights reser
 *
 * This program is free software; you can redistribute it and/or modify i
 * under the terms of the GNU General Public License version 2 as published
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundatio
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kexec.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/multi.h>
#include <linux/ckevent.h>

#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>

There are too many fun parts to cover- I could probably write an entire blog post on just this
part. I’ll cut it short for now, but here is 1MB of sampled Linux code for your viewing pleasure.

Generating Baby Names
Lets try one more for fun. Lets feed the RNN a large text file that contains 8000 baby names
listed out, one per line (names obtained from here). We can feed this to the RNN and then
generate new names! Here are some example names, only showing the ones that do not occur
in the training data (90% don’t):

Rudi Levette Berice Lussa Hany Mareanne Chrestina Carissy Marylen Hammine Janye Marlise
Jacacrie Hendred Romand Charienna Nenotto Ette Dorane Wallen Marly Darine Salina Elvyn
Ersia Maralena Minoria Ellia Charmin Antley Nerille Chelon Walmor Evena Jeryly Stachon
Charisa Allisa Anatha Cathanie Geetra Alexie Jerin Cassen Herbett Cossie Velen Daurenge
Robester Shermond Terisa Licia Roselen Ferine Jayn Lusine Charyanne Sales Sanny Resa
Wallon Martine Merus Jelen Candica Wallin Tel Rachene Tarine Ozila Ketia Shanne Arnande
Karella Roselina Alessia Chasty Deland Berther Geamar Jackein Mellisand Sagdy Nenc Lessie

#include <asm/setew.h>
#include <asm/pgproto.h>

#define REG_PG vesa_slot_addr_pack
#define PFM_NOCOMP AFSR(0, load)
#define STACK_DDR(type) (func)

#define SWAP_ALLOCATE(nr) (e)
#define emulate_sigs() arch_get_unaligned_child()
#define access_rw(TST) asm volatile("movd %%esp, %0, %3" : : "r" (0)); \
 if (__type & DO_READ)

static void stat_PC_SEC __read_mostly offsetof(struct seq_argsqueue, \
 pC>[1]);

static void
os_prefix(unsigned long sys)
{
#ifdef CONFIG_PREEMPT
 PUT_PARAM_RAID(2, sel) = get_state_state();
 set_pid_sum((unsigned long)state, current_state_str(),
 (unsigned long)-1->lr_full; low;
}

http://cs.stanford.edu/people/karpathy/char-rnn/linux.txt
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/

Rasemy Guen Gavi Milea Anneda Margoris Janin Rodelin Zeanna Elyne Janah Ferzina Susta
Pey Castina

You can see many more here. Some of my favorites include “Baby” (haha), “Killie”, “Char”, “R”,
“More”, “Mars”, “Hi”, “Saddie”, “With” and “Ahbort”. Well that was fun. Of course, you can
imagine this being quite useful inspiration when writing a novel, or naming a new startup :)

Understanding what’s going on
We saw that the results at the end of training can be impressive, but how does any of this
work? Lets run two quick experiments to briefly peek under the hood.

The evolution of samples while training
First, it’s fun to look at how the sampled text evolves while the model trains. For example, I
trained an LSTM of Leo Tolstoy’s War and Peace and then generated samples every 100
iterations of training. At iteration 100 the model samples random jumbles:

However, notice that at least it is starting to get an idea about words separated by spaces.
Except sometimes it inserts two spaces. It also doesn’t know that comma is amost always
followed by a space. At 300 iterations we see that the model starts to get an idea about quotes
and periods:

The words are now also separated with spaces and the model starts to get the idea about
periods at the end of a sentence. At iteration 500:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'n
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

we counter. He stutn co des. His stanted out one ofler that concossions and
to gearang reay Jotrets and with fre colt otf paitt thin wall. Which das st

http://cs.stanford.edu/people/karpathy/namesGenUnique.txt

the model has now learned to spell the shortest and most common words such as “we”, “He”,
“His”, “Which”, “and”, etc. At iteration 700 we’re starting to see more and more English-like text
emerge:

At iteration 1200 we’re now seeing use of quotations and question/exclamation marks. Longer
words have now been learned as well:

"Kite vouch!" he repeated by her
door. "But I would be done and quarts, feeling, then, son is people...."

Until at last we start to get properly spelled words, quotations, names, and so on by about
iteration 2000:

The picture that emerges is that the model first discovers the general word-space structure and
then rapidly starts to learn the words; First starting with the short words and then eventually the
longer ones. Topics and themes that span multiple words (and in general longer-term
dependencies) start to emerge only much later.

Visualizing the predictions and the “neuron” firings in the RNN
Another fun visualization is to look at the predicted distributions over characters. In the
visualizations below we feed a Wikipedia RNN model character data from the validation set
(shown along the blue/green rows) and under every character we visualize (in red) the top 5
guesses that the model assigns for the next character. The guesses are colored by their
probability (so dark red = judged as very likely, white = not very likely). For example, notice that
there are stretches of characters where the model is extremely confident about the next letter
(e.g., the model is very confident about characters during the http://www. sequence).

The input character sequence (blue/green) is colored based on the firing of a randomly chosen
neuron in the hidden representation of the RNN. Think about it as green = very excited and

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say fallin
how, and Gogition is so overelical and ofter.

"Why do what that day," replied Natasha, and wishing to himself the fact th
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law wome

http://www/

blue = not very excited (for those familiar with details of LSTMs, these are values between
[-1,1] in the hidden state vector, which is just the gated and tanh’d LSTM cell state). Intuitively,
this is visualizing the firing rate of some neuron in the “brain” of the RNN while it reads the input
sequence. Different neurons might be looking for different patterns; Below we’ll look at 4
different ones that I found and thought were interesting or interpretable (many also aren’t):

The neuron highlighted in this image seems to get very excited about URLs and turns off outside of the
URLs. The LSTM is likely using this neuron to remember if it is inside a URL or not.

The highlighted neuron here gets very excited when the RNN is inside the [[]] markdown environment and
turns off outside of it. Interestingly, the neuron can't turn on right after it sees the character "[", it must wait for

the second "[" and then activate. This task of counting whether the model has seen one or two "[" is likely
done with a different neuron.

Here we see a neuron that varies seemingly linearly across the [[]] environment. In other words its activation
is giving the RNN a time-aligned coordinate system across the [[]] scope. The RNN can use this information
to make different characters more or less likely depending on how early/late it is in the [[]] scope (perhaps?).

Here is another neuron that has very local behavior: it is relatively silent but sharply turns off right after the
first "w" in the "www" sequence. The RNN might be using this neuron to count up how far in the "www"

sequence it is, so that it can know whether it should emit another "w", or if it should start the URL.

Of course, a lot of these conclusions are slightly hand-wavy as the hidden state of the RNN is a
huge, high-dimensional and largely distributed representation. These visualizations were
produced with custom HTML/CSS/Javascript, you can see a sketch of what’s involved here if
you’d like to create something similar.

We can also condense this visualization by excluding the most likely predictions and only
visualize the text, colored by activations of a cell. We can see that in addition to a large portion
of cells that do not do anything interpretible, about 5% of them turn out to have learned quite
interesting and interpretible algorithms:

http://cs.stanford.edu/people/karpathy/viscode.zip

Again, what is beautiful about this is that we didn’t have to hardcode at any point that if you’re
trying to predict the next character it might, for example, be useful to keep track of whether or
not you are currently inside or outside of quote. We just trained the LSTM on raw data and it
decided that this is a useful quantitity to keep track of. In other words one of its cells gradually
tuned itself during training to become a quote detection cell, since this helps it better perform
the final task. This is one of the cleanest and most compelling examples of where the power in
Deep Learning models (and more generally end-to-end training) is coming from.

Source Code
I hope I’ve convinced you that training character-level language models is a very fun exercise.
You can train your own models using the char-rnn code I released on Github (under MIT
license). It takes one large text file and trains a character-level model that you can then sample
from. Also, it helps if you have a GPU or otherwise training on CPU will be about a factor of 10x
slower. In any case, if you end up training on some data and getting fun results let me know!
And if you get lost in the Torch/Lua codebase remember that all it is is just a more fancy version
of this 100-line gist.

Brief digression. The code is written in Torch 7, which has recently become my favorite deep
learning framework. I’ve only started working with Torch/LUA over the last few months and it
hasn’t been easy (I spent a good amount of time digging through the raw Torch code on Github
and asking questions on their gitter to get things done), but once you get a hang of things it

https://github.com/karpathy/char-rnn
https://gist.github.com/karpathy/d4dee566867f8291f086
http://torch.ch/

offers a lot of flexibility and speed. I’ve also worked with Caffe and Theano in the past and I
believe Torch, while not perfect, gets its levels of abstraction and philosophy right better than
others. In my view the desirable features of an effective framework are:

1. CPU/GPU transparent Tensor library with a lot of functionality (slicing, array/matrix
operations, etc.)

2. An entirely separate code base in a scripting language (ideally Python) that operates
over Tensors and implements all Deep Learning stuff (forward/backward, computation
graphs, etc)

3. It should be possible to easily share pretrained models (Caffe does this well, others
don’t), and crucially

4. NO compilation step (or at least not as currently done in Theano). The trend in Deep
Learning is towards larger, more complex networks that are are time-unrolled in complex
graphs. It is critical that these do not compile for a long time or development time greatly
suffers. Second, by compiling one gives up interpretability and the ability to log/debug
effectively. If there is an option to compile the graph once it has been developed for
efficiency in prod that’s fine.

Further Reading
Before the end of the post I also wanted to position RNNs in a wider context and provide a
sketch of the current research directions. RNNs have recently generated a significant amount
of buzz and excitement in the field of Deep Learning. Similar to Convolutional Networks they
have been around for decades but their full potential has only recently started to get widely
recognized, in large part due to our growing computational resources. Here’s a brief sketch of
a few recent developments (definitely not complete list, and a lot of this work draws from
research back to 1990s, see related work sections):

In the domain of NLP/Speech, RNNs transcribe speech to text, perform machine translation,
generate handwritten text, and of course, they have been used as powerful language models
(Sutskever et al.) (Graves) (Mikolov et al.) (both on the level of characters and words). Currently
it seems that word-level models work better than character-level models, but this is surely a
temporary thing.

Computer Vision. RNNs are also quickly becoming pervasive in Computer Vision. For
example, we’re seeing RNNs in frame-level video classification, image captioning (also
including my own work and many others), video captioning and very recently visual question
answering. My personal favorite RNNs in Computer Vision paper is Recurrent Models of Visual
Attention, both due to its high-level direction (sequential processing of images with glances)
and the low-level modeling (REINFORCE learning rule that is a special case of policy gradient

http://www.jmlr.org/proceedings/papers/v32/graves14.pdf
http://arxiv.org/abs/1409.3215
http://www.cs.toronto.edu/~graves/handwriting.html
http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf
http://arxiv.org/abs/1308.0850
http://www.rnnlm.org/
http://arxiv.org/abs/1411.4389
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1505.00487
http://arxiv.org/abs/1505.02074
http://arxiv.org/abs/1406.6247

methods in Reinforcement Learning, which allows one to train models that perform non-
differentiable computation (taking glances around the image in this case)). I’m confident that
this type of hybrid model that consists of a blend of CNN for raw perception coupled with an
RNN glance policy on top will become pervasive in perception, especially for more complex
tasks that go beyond classifying some objects in plain view.

Inductive Reasoning, Memories and Attention. Another extremely exciting direction of
research is oriented towards addressing the limitations of vanilla recurrent networks. One
problem is that RNNs are not inductive: They memorize sequences extremely well, but they
don’t necessarily always show convincing signs of generalizing in the correct way (I’ll provide
pointers in a bit that make this more concrete). A second issue is they unnecessarily couple
their representation size to the amount of computation per step. For instance, if you double the
size of the hidden state vector you’d quadruple the amount of FLOPS at each step due to the
matrix multiplication. Ideally, we’d like to maintain a huge representation/memory (e.g.
containing all of Wikipedia or many intermediate state variables), while maintaining the ability to
keep computation per time step fixed.

The first convincing example of moving towards these directions was developed in DeepMind’s
Neural Turing Machines paper. This paper sketched a path towards models that can perform
read/write operations between large, external memory arrays and a smaller set of memory
registers (think of these as our working memory) where the computation happens. Crucially, the
NTM paper also featured very interesting memory addressing mechanisms that were
implemented with a (soft, and fully-differentiable) attention model. The concept of soft
attention has turned out to be a powerful modeling feature and was also featured in Neural
Machine Translation by Jointly Learning to Align and Translate for Machine Translation and
Memory Networks for (toy) Question Answering. In fact, I’d go as far as to say that

Now, I don’t want to dive into too many details but a soft attention scheme for memory
addressing is convenient because it keeps the model fully-differentiable, but unfortunately one
sacrifices efficiency because everything that can be attended to is attended to (but softly).
Think of this as declaring a pointer in C that doesn’t point to a specific address but instead
defines an entire distribution over all addresses in the entire memory, and dereferencing the
pointer returns a weighted sum of the pointed content (that would be an expensive operation!).
This has motivated multiple authors to swap soft attention models for hard attention where one
samples a particular chunk of memory to attend to (e.g. a read/write action for some memory
cell instead of reading/writing from all cells to some degree). This model is significantly more
philosophically appealing, scalable and efficient, but unfortunately it is also non-differentiable.

The concept of attention is the most interesting recent architectural innovation in neural
networks.

http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1503.08895

This then calls for use of techniques from the Reinforcement Learning literature (e.g.
REINFORCE) where people are perfectly used to the concept of non-differentiable interactions.
This is very much ongoing work but these hard attention models have been explored, for
example, in Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets,
Reinforcement Learning Neural Turing Machines, and Show Attend and Tell.

People. If you’d like to read up on RNNs I recommend theses from Alex Graves, Ilya Sutskever
and Tomas Mikolov. For more about REINFORCE and more generally Reinforcement Learning
and policy gradient methods (which REINFORCE is a special case of) David Silver’s class, or
one of Pieter Abbeel’s classes.

Code. If you’d like to play with training RNNs I hear good things about keras or passage for
Theano, the code released with this post for Torch, or this gist for raw numpy code I wrote a
while ago that implements an efficient, batched LSTM forward and backward pass. You can
also have a look at my numpy-based NeuralTalk which uses an RNN/LSTM to caption images,
or maybe this Caffe implementation by Jeff Donahue.

Conclusion
We’ve learned about RNNs, how they work, why they have become a big deal, we’ve trained
an RNN character-level language model on several fun datasets, and we’ve seen where RNNs
are going. You can confidently expect a large amount of innovation in the space of RNNs, and I
believe they will become a pervasive and critical component to intelligent systems.

Lastly, to add some meta to this post, I trained an RNN on the source file of this blog post.
Unfortunately, at about 46K characters I haven’t written enough data to properly feed the RNN,
but the returned sample (generated with low temperature to get a more typical sample) is:

I've the RNN with and works, but the computed with program of the
RNN with and the computed of the RNN with with and the code

Yes, the post was about RNN and how well it works, so clearly this works :). See you next time!

EDIT (extra links):

Videos:

I gave a talk on this work at the London Deep Learning meetup (video).

Discussions:

http://arxiv.org/abs/1503.01007
http://arxiv.org/abs/1505.00521
http://arxiv.org/abs/1502.03044
http://www.cs.toronto.edu/~graves/
http://www.cs.toronto.edu/~ilya/
http://www.rnnlm.org/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Home.html
http://www.cs.berkeley.edu/~pabbeel/
https://github.com/fchollet/keras
https://github.com/IndicoDataSolutions/Passage
https://github.com/karpathy/char-rnn
https://gist.github.com/karpathy/587454dc0146a6ae21fc
https://github.com/karpathy/neuraltalk
http://jeffdonahue.com/lrcn/
https://skillsmatter.com/skillscasts/6611-visualizing-and-understanding-recurrent-networks

HN discussion
Reddit discussion on r/machinelearning
Reddit discussion on r/programming

Replies:

Yoav Goldberg compared these RNN results to n-gram maximum likelihood (counting)
baseline
@nylk trained char-rnn on cooking recipes. They look great!
@MrChrisJohnson trained char-rnn on Eminem lyrics and then synthesized a rap song
with robotic voice reading it out. Hilarious :)
@samim trained char-rnn on Obama Speeches. They look fun!
João Felipe trained char-rnn irish folk music and sampled music
Bob Sturm also trained char-rnn on music in ABC notation
RNN Bible bot by Maximilien
Learning Holiness learning the Bible
Terminal.com snapshot that has char-rnn set up and ready to go in a browser-based
virtual machine (thanks @samim)

Featured Comment

 •

4ω⁴/3c³ • 3 years ago

see more

I used 400 Mb of NSF Research Awards abstracts 1990-2003 for learning this char-RNN
with 3 layers and size 1024. The generated abstracts seem almost reasonable and leave
you with a feeling that you didn't quite understood the meaning because you're not
familiar with nuances of special terms. Here they are, and here's one example:

Title : Electoral Research on Presynaptic Problems in Subsequent Structure
Type : Award
NSF Org : DMS
Latest
Amendment
Date : July 10, 1993
File : a9213310

Award Number: 9261720
Award Instr.: Standard Grant
Prgm Manager: Phillip R. Taylor
 OCE DIVISION OF OCEAN SCIENCES
 GEO DIRECTORATE FOR GEOSCIENCES
Start Date : September 1, 1992
Expires : February 28, 1992 (Estimated)
Expected
Total Amt. : $96200 (Estimated)
Investigator: Mark F. Schwartz (Principal Investigator current)
Sponsor : U of Cal Davis
 OVCR/Sponsorptinch Ave AMbEr, Med Ot CTs, IN 428823462 812/471

NSF Program : 1670 CHEMICAL OCEANOGRAPHY
Fld Applictn: 0204000 Oceanography

31△ ▽ Share ›

https://news.ycombinator.com/item?id=9584325
http://www.reddit.com/r/MachineLearning/comments/36s673/the_unreasonable_effectiveness_of_recurrent/
http://www.reddit.com/r/programming/comments/36su8d/the_unreasonable_effectiveness_of_recurrent/
https://twitter.com/yoavgo
http://nbviewer.ipython.org/gist/yoavg/d76121dfde2618422139
https://twitter.com/nylk
https://gist.github.com/nylki/1efbaa36635956d35bcc
https://twitter.com/MrChrisJohnson
https://twitter.com/samim
https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
https://twitter.com/seaandsailor
https://soundcloud.com/seaandsailor/sets/char-rnn-composes-irish-folk-music
https://twitter.com/boblsturm
https://highnoongmt.wordpress.com/2015/05/22/lisls-stis-recurrent-neural-networks-for-folk-music-generation/
https://twitter.com/RNN_Bible
https://twitter.com/the__glu/with_replies
http://cpury.github.io/learning-holiness/
https://www.terminal.com/tiny/ZMcqdkWGOM
https://www.twitter.com/samim
https://disqus.com/by/4_3c/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2073825449
http://disq.us/url?url=http%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2FNSF%2BResearch%2BAward%2BAbstracts%2B1990-2003%3Ar56bo-9OAIeiB0tncubitW-ZdHY&cuid=3095056
https://disq.us/url?url=https%3A%2F%2Fdl.dropboxusercontent.com%2Fu%2F60518165%2FLepra%2Frnn%2Fnsf-awards.txt%3A1PkPZAaM0BAJaZ-2Slp3dpBWWw4&cuid=3095056
https://disqus.com/by/4_3c/

286 Comments Andrej's Blog Login1

 Share⤤ Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Join the discussion…

?

 • Reply •

RalfD • 3 years ago

Maybe it would be fun to feed in musical notation and then hear the output? The Fake-
Shakespeare and fake-programming produced here is impressive (even though nonsensical),
but I wonder what would Beethoven, Bach or Mozart sound like? Chaotic or actually
melodic?
46△ ▽

 • Reply •

James Blaha • 3 years ago> RalfD

I fed in famous guitar tabs (about 500mb) worth, in ASCII. It now generates guitar
tabs in ASCII well enough for me to import them into GuitarPro, where I recorded it
playing back. I took that and imported to FL Studio, added some filters and a drum
loop, but the notes and rhythms are otherwise totally unedited. This is what it sounds
like:

https://soundcloud.com/opto...

It is only about 20% done training on the file, and already getting good results!
30△ ▽

 • Reply •

bmilde • 3 years ago> James Blaha

Hi James!

Really cool idea and something I want to give as an exercise to my student in
a seminar. Could you send me your dataset? Thanks!
1△ ▽

 • Reply •

James Blaha • 3 years ago> bmilde

Hi! I'd be happy to! Here is a bunch of stuff from it, including the
dataset, trained models, and the files I used to convert the tabs back
and forth.

https://drive.google.com/fo...
5△ ▽

k th 3> J Bl h

 Recommend  144

Share ›

Share ›

Share ›

Share ›

https://disqus.com/home/forums/karpathyblog/
https://disqus.com/home/inbox/
https://disqus.com/by/MarcellaTheWildcat/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057322743
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disq.us/url?url=https%3A%2F%2Fsoundcloud.com%2Foptometrist-prime%2Frecurrence-music-written-by-a-recurrent-neural-network%3AqfsHnCPDgpP1Wn3xSO-LwiR2ZEw&cuid=3095056
https://disqus.com/by/bmilde/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2112426109
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057322743
https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2127591563
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2112426109
https://disq.us/url?url=https%3A%2F%2Fdrive.google.com%2Ffolderview%3Fid%3D0BxIbIVKS-qnNfmhuUDkyNUdIaHlBOHBuSG4yS215cGtKNkZ0NEtZWi1oYUVWOU8xT3VpUXM%26usp%3Dsharing%3AmHAsBQWIDyXaozkqyalwWijcJEo&cuid=3095056
https://disqus.com/by/karpathy/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057462799
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057322743
https://disqus.com/by/MarcellaTheWildcat/
https://disqus.com/by/jamesblaha/
https://disqus.com/by/bmilde/
https://disqus.com/by/jamesblaha/
https://disqus.com/by/karpathy/

 • Reply •

karpathy • 3 years agoMod > James Blaha

Neat, this is fun! What format is the input in?
1△ ▽

 • Reply •

James Blaha • 3 years ago

see more

> karpathy

I formatted the input like:

%
E|------------------------------|---
-|
B|------------------------------|---
-|
G|------14--12--12--9---9---7---|-------5--------5---------------------------
------|
D|------14--12--12--9---9---7---|----3--------3--------5--7-----5--7--5-
-7--5------|
A|------------------------------|-3--------3--------5--------5----------------
-7---|
E|-0----------------------------|--
--|
%
E|--------------------------------|-------------------------------------|---------
------------------|

3△ ▽

 • Reply •

karpathy • 3 years agoMod > James Blaha

hmm I'm not sure that this is very RNN friendly input form. Wouldn't it
be better if you gave it contiguous chunks in time? E.g. instead of
E 1 2 3
B 4 5 6
G 7 8 9
you'd pass in something like 123.456.789. In other words, you're
passing in groups of 6 things that all happened at the same time, and
they are always delimited with a special character such as the dot.

I'd expect that to work significantly better
8△ ▽

Umut Ozertem • 2 years ago> karpathy

I agree. Also one other problem (maybe not a problem, not sure) with
this is that the tablature takes fingering into account and for feeding
data to an rnn to produce some music (more specifically chords,
phrasing and some basic harmony) that shouldn't matter. There are
multiple spots on the guitar to get the same note. 12th fret on E string
= 7th fret on A string = 2nd fret on D string etc... (i.e. piano is a 1-d

Share ›

Share ›

Share ›

https://disqus.com/by/karpathy/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057462799
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057322743
https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057576798
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057462799
https://disqus.com/by/karpathy/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057579226
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057576798
https://disqus.com/by/umutozertem/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2517831621
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057579226
https://disqus.com/by/karpathy/
https://disqus.com/by/jamesblaha/
https://disqus.com/by/karpathy/
https://disqus.com/by/umutozertem/

 • Reply •

instrument and guitar is a 2-d instrument). Perhaps the network can
learn that too but why not remove ambiguity first and then feed the
data?

BTW how do you handle the timing of each note? Tablature is rather
weak in that sense, no?
△ ▽

 • Reply •

James Blaha • 3 years ago> karpathy

This input format is significantly better on the formatting, it pretty much
never messes up now. The music itself doesn't seem quite as good but
maybe I have to let it train longer. I am getting a lower validation loss
(from 0.24 on the old one to 0.19 on the new one).

When you say the training loss is MUCH lower, what do you mean by
that? I'm currently getting a training loss of ~0.16 with a validation loss
of ~0.19, and it is still improving as training goes on a small amount, so
I think it isn't overfitting but I'm not sure.
△ ▽

 • Reply •

theguy126 • 3 years ago> James Blaha

how do you do validation loss on generated stuff?
4△ ▽

 • Reply •

karpathy • 3 years agoMod > James Blaha

0.16 < 0.19 so you're overfitting a small bit. I'd suggest you mix in a bit
of dropout, maybe 0.1 or 0.25, or so. Make sure to sync your code with
the one that's on Github now, I issued several improvements recently
that should make things train quite a bit better.
2△ ▽

 • Reply •

James Blaha • 3 years ago> karpathy

I was going to try that as well, but it seems like it can still figure it out
this way since none of the lines aren't too long. I'll train one with the
same settings on a dataset like that and let you know if it works better.

This way the structure of a single string, for instance for melody, should
be better, whereas the other way chords, bars, and tempo should work
better.
△ ▽

Adrià Garriga • 3 years ago> RalfD

Try training it on some Lilypond or ABC files. Seeing what the C file looked like I say
they will sound chaotic, because the structure of those files do not tie the
simultaneous-sounding notes together.

However, if you restructure them to have measures played at the same time together

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2061292057
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057579226
https://disqus.com/by/theguy126/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2120305346
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2061292057
https://disqus.com/by/karpathy/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2061326120
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2061292057
https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057641233
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2057579226
https://disqus.com/by/adrigarriga/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2039117690
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disqus.com/by/jamesblaha/
https://disqus.com/by/theguy126/
https://disqus.com/by/karpathy/
https://disqus.com/by/jamesblaha/
https://disqus.com/by/adrigarriga/

 • Reply •

in the source, the result might be better.

This remains as a project to do another day :)
4△ ▽

 • Reply •

yankov • 3 years ago> RalfD

I am wondering also what kind of output you get if you feed it visual data, for example
paintings of Van Gogh. It will be certainly a mess, but will there be an interesting
structure?
6△ ▽

 • Reply •

Jasper Horrell • 3 years ago> yankov

Great RNN post with code. Thanks!

Following good results on various pieces of text and python code generation
using the github code from the post, a colleague and I gave image generation
(computer art) a go over the last couple of days using the same RNN code.
We were not expecting success, just curious. We tried with a couple of images
(of size 512x512 and 1024x1024) and also a couple of encodings (the last
attempt mapped (compressed) the image byte range into the ASCII printable
character range and then mapped it back again to view the generated image
at the end. We also tried varying the RNN size up and down (1024 and 30) and
the seq_length parameter (up to 512). The approach was deliberately simple
i.e. simply reading the image row by row and treating that as one long
sequence rather than approaches more suitable to images using convolution
and regions etc. We worked with grayscale. One of the test images was the
Lena image often used in image processing tests.

Training seemed to converge, but no recognisable features showed up. This
could either be due to user error with the new code or (more likely I think since
we had it working for other problems) a mismatch between the long term
memory of the algorithm and the type of problem we were tackling. Good
results in the text area have come from predicting words, phrases, code
snippets etc. which are coherent in relatively short sequences. However, to get
an image with recognisable features using the overly simplistic approach
described above, it would seem one would need to rather worry about long
term trends of coherence between rows in the image rather than short term
sequence accuracy. So, it would appear that this is not something that the
algorithm is really designed to do. One would probably have to do something
along the lines of the "painting house numbers" approach as per the post
instead to make this work.

Any more views on this? Seems to also tie in with the Chris B "long-timescale
tasks" / "long-term planning" comment below.
1△ ▽

theguy126 • 3 years ago> Jasper Horrell

F b k l i h h d i i

Share ›

Share ›

Share ›

https://disqus.com/by/yankov/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2039661390
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disqus.com/by/jasperhorrell/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045498962
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2039661390
https://disqus.com/by/theguy126/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2120302674
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045498962
https://disqus.com/by/yankov/
https://disqus.com/by/jasperhorrell/
https://disqus.com/by/theguy126/

 • Reply •

Facebook recently came up with a method to generate images using
"generative adversarial networks" and "laplacian pyramids" (treating
each "frequency" as a different layer to train on) I don't think they used
RNN at all
△ ▽

 • Reply •

karpathy • 3 years agoMod > Jasper Horrell

Wow, this sounds like a terrible idea, I love it :) Too bad it didn't look
comprehensible at all. I would have liked to see some (crappy) results.
Another terrible idea is to feed in the image with pixels also a space
filling curve (https://www.google.com/sear... which are more local in 2D
space than rows of pixels. Thanks for reporting back though!
△ ▽

 • Reply •

Jasper Horrell • 2 years ago> karpathy

This work had more success with generation of Monet images:
http://gitxiv.com/posts/MXf...
△ ▽

 • Reply •

Jasper Horrell • 3 years ago> karpathy

Here is a zip file with 4 png images: a) lena_high_res.png - view of
input 1024x1024 image; b) lena_rnn30.png - view of output image with
RNN size of 30; c) lena_rnn1024.png - view of output image with RNN
of size 1024; d) lena_seq_len512.png - view of output image with
sequence length 512. Else default params. Mapped to ASCII printable
character range for RNN input and back again on output. Original Lena
clearly more beautiful :) https://drive.google.com/fi...
△ ▽

 • Reply •

Oliver Mattos • 3 years ago> Jasper Horrell

I think you need to use a space-filling curve instead of simple x-y
scanning to get good results.

Or even better, you need to use a 2D LSTM.
△ ▽

 • Reply •

yankov • 3 years ago> Jasper Horrell

Why grayscale though? Perhaps the results could have been more
interesting if you used all 3 channels?
△ ▽

 • Reply •

Travis Ames • 3 years ago> yankov

http://www.theguardian.com/...
△ ▽

Douglas Bagnall • 3 years ago> RalfD

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/karpathy/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045508855
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045498962
https://disq.us/url?url=https%3A%2F%2Fwww.google.com%2Fsearch%3Fq%3Dspace%2Bfilling%2Bcurve%26espv%3D2%26biw%3D1462%26bih%3D1249%26site%3Dwebhp%26source%3Dlnms%26tbm%3Disch%26sa%3DX%26ei%3DYRhkVdaLCZe2oQTE0YAI%26ved%3D0CAYQ_AUoAQ%29%3AQMAn-glpkKQuBg-yp38DjzfxVVk&cuid=3095056
https://disqus.com/by/jasperhorrell/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2188157960
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045508855
http://disq.us/url?url=http%3A%2F%2Fgitxiv.com%2Fposts%2FMXfNkWhJ7JHqb8oZE%2Fteaching-recurrent-neural-networks-about-monet%3A7MZTnFKSEvFD4nTz9ZpMA8-IwVA&cuid=3095056
https://disqus.com/by/jasperhorrell/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045652143
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045508855
https://disq.us/url?url=https%3A%2F%2Fdrive.google.com%2Ffile%2Fd%2F0BypgZI1OrGCjRDZnMUtkR3doaG8%2Fview%3Fusp%3Dsharing%3AQXErCL0o5a1u92mL59Anle7KyMk&cuid=3095056
https://disqus.com/by/oliver_mattos/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2046080456
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045652143
https://disqus.com/by/yankov/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2046054213
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045652143
https://disqus.com/by/travis_ames/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2086636999
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2039661390
http://disq.us/url?url=http%3A%2F%2Fwww.theguardian.com%2Ftechnology%2F2015%2Fjun%2F18%2Fgoogle-image-recognition-neural-network-androids-dream-electric-sheep%3ADqpmHRpxomfd-5cAevJhCGNDlk0&cuid=3095056
https://disqus.com/by/douglasbagnall/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2040486198
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disqus.com/by/theguy126/
https://disqus.com/by/karpathy/
https://disqus.com/by/jasperhorrell/
https://disqus.com/by/jasperhorrell/
https://disqus.com/by/oliver_mattos/
https://disqus.com/by/yankov/
https://disqus.com/by/travis_ames/
https://disqus.com/by/douglasbagnall/

 • Reply •

This is actually one of the standard RNN test problems. Google for something like
"rnn nottingham piano rolls JSB chorales" and you'll get links to a few papers.
3△ ▽

 • Reply •

theguy126 • 3 years ago> RalfD

No, no, no. NOT notation -- that has been done to death and is clunky and ghetto.
We are beyond that. USE THE WAVEFORM and make the neural net DREAM the
generated music directly! No need for human performers or interpretation. There were
already a group of people that showed a demo of it -- this is truly the future of music
generation.
6△ ▽

 • Reply •

Shane • 2 years ago> theguy126

Where is this demo or any info on this?
1△ ▽

 • Reply •

theguy126 • 2 years ago> Shane

look up recurrent neural network music. They used Madeon to train it
and it's on Youtube. Unfortunately it's overfitting bigtime. A possible
improvement might be to use Facebook's technique (mentioned in the
paper of their recently successful "realistic photos generation" using
neural networks that also generated a lot of media buzz): Instead of
training it all at once, have a different neural network for each "level of
detail" progressively until it reaches the highest level of detail... or
something like that
△ ▽

 • Reply •

Shane • 2 years ago> theguy126

Thanks! They have source as well so something to explore. I think that
this type of application if perfected could take off in the electronic
music community. Neural remixes; that would be something.
1△ ▽

 • Reply •

algorhythm.ai • 2 years ago> RalfD

Here is an answer to your q. I have been producing algorithmic music for a while,
inspired by code to produce synthetic text, like the one above. My approach
produces polyphonic output, in contrast to what Google is doing now (monophonic).
https://soundcloud.com/algo...
1△ ▽

 • Reply •

Gainax • 3 years ago> RalfD

That's how modern composers produce music. They listen to lots of music and
produce similar but not-copycat. RNN will probably destroy composer job first. :P
1△ ▽

Bahadır Onur Güdürü 10 th> R lfD

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/theguy126/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2120299619
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disqus.com/by/disqus_7OgDu519ft/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2162476227
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2120299619
https://disqus.com/by/theguy126/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2163418469
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2162476227
https://disqus.com/by/disqus_7OgDu519ft/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2163741777
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2163418469
https://disqus.com/by/algorhythmai/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2719504969
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disq.us/url?url=https%3A%2F%2Fsoundcloud.com%2Falgorhythm-ai%2Fbaroque-fantasy%3AmIRbuIqVTK7l0DiXWSb5v5ACsz4&cuid=3095056
https://disqus.com/by/hwangdongseong/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2045530920
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disqus.com/by/bahadronurgdr/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-3203878441
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disqus.com/by/douglasbagnall/
https://disqus.com/by/theguy126/
https://disqus.com/by/disqus_7OgDu519ft/
https://disqus.com/by/theguy126/
https://disqus.com/by/disqus_7OgDu519ft/
https://disqus.com/by/algorhythmai/
https://disqus.com/by/hwangdongseong/
https://disqus.com/by/bahadronurgdr/

 • Reply •

Bahadır Onur Güdürü • 10 months ago> RalfD

Found out this vid maybe you are interested: https://www.youtube.com/wat...
△ ▽

 • Reply •

dtinth • 2 years ago> RalfD

I converted some Beethoven, Chopin, Debussy, Liszt, Mozart, Tchaikovsky MIDI files
into a simple 1MB text file, containing 3 types of instructions: Note on (3 bytes), Note
off (3 bytes), and wait one tick (1 byte).

This gives us a uniform timestep, which I guess would be easier for the RNN to learn.
Then I had char-rnn train the model. Finally, the sampled output is converted back to
MIDI.

The model yielded quite a melodic piece. Seems that the model learnt some chords
and rhythms (it can generate eighth notes, triplets, sixteenths).

Here’s what it sounds like:
https://soundcloud.com/o_oo...
△ ▽

 • Reply •

Angel Avila • 2 months ago> dtinth

Hey man! I'm trying to do the same thing as you, but I'm having problems
converting the midi file to text. I parse it from csv to text but end up with an
enormous output. How did you do it? Any chance I could get your parser?
△ ▽

 • Reply •

James Blaha • 3 years ago> RalfD

I've been training the data on guitar tabs which is convenient since the format is
naturally ASCII. I'm getting pretty melodic stuff out of it, though it is mostly pretty
simple.

I'm trying a lot of different stuff out first on smaller datasets (~5mb) but my full data
set is GBs large. Are there good resources I could look at to help me get a better
model for my case?
△ ▽

 • Reply •

karpathy • 3 years agoMod > James Blaha

i wrote quite a lot about this in the Readme.

if you have a lot of data, make sure rnn_size is big (as big as fits), and that
num_layers 3. Then train for long.
1△ ▽

James Blaha • 3 years ago> karpathy

When I tried for 3 layers I get this error when sampling:

th sample.lua smallest_good/lm_lstm_epoch30.00_0.1393.t7
using CUDA on GPU 3...

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/bahadronurgdr/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-3203878441
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disq.us/url?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSacogDL_4JU%3A9j2_eBaNAu1EGVZQx1yqBumEJ10&cuid=3095056
https://disqus.com/by/dtinth/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2711380238
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
http://disq.us/url?url=http%3A%2F%2Fwww.piano-midi.de%2F%3Akdjst2Xppd1iv2QGC-dbtjskuF0&cuid=3095056
https://disq.us/url?url=https%3A%2F%2Fsoundcloud.com%2Fo_ooooo%2Fsome-music-generated-by-char-rnn%3AjTvTAt7VvVWW-kG2yjIfd462bdw&cuid=3095056
https://disqus.com/by/disqus_XUQWhA42Up/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-3634806133
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2711380238
https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2049020513
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2038962893
https://disqus.com/by/karpathy/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2049032780
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2049020513
https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2052270827
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2049032780
https://disqus.com/by/bahadronurgdr/
https://disqus.com/by/dtinth/
https://disqus.com/by/disqus_XUQWhA42Up/
https://disqus.com/by/jamesblaha/
https://disqus.com/by/karpathy/
https://disqus.com/by/jamesblaha/

 • Reply •

g
creating an LSTM...
seeding with
/home/ubuntu/torch/install/bin/luajit: ./util/OneHot.lua:14: bad
argument #1 to 'size' (out of range)
stack traceback:
[C]: in function 'size'
./util/OneHot.lua:14: in function 'forward'
sample.lua:87: in main chunk
[C]: in function 'dofile'
...untu/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:131: in main
chunk
[C]: at 0x00406670

Not sure if I did something wrong, or maybe the rnn_size is too large or
something? I did 3 layers, 500 rnn_size. Following your guide on the
github it seemed like I was getting good results with the training loss
and validation loss, but I just can't get it to sample. Maybe it was
because I was training multiple models on the same data (im using an
amazon instance with 4 gpus)
△ ▽

 • Reply •

Graydyn Young • 3 years ago> James Blaha

Hi James,
I saw that error recently, and for me the problem was that the primetext
I was using wasn't in my training vocabulary. The default primetext is a
' ', so if your training tabs don't have any spaces in them I think you
would get this error.
1△ ▽

 • Reply •

James Blaha • 3 years ago> Graydyn Young

Ah, I recently got the error again when inputting a tab that had a slash
in it, where my training data doesn't. This makes total sense and I'm
glad I finally know the source! Thanks!
△ ▽

 • Reply •

karpathy • 3 years agoMod > James Blaha

can you get other smaller networks to sample fine?
△ ▽

 • Reply •

James Blaha • 3 years ago> karpathy

I have a 500mb data file of guitar tabs, in ASCII, and it errors when I try
to sample any net trained on a smaller version of the file but works fine
when I use the full thing. Other input files of 1mb-10mb work fine, but
2mb of the first lines of the big file doesn't work.
△ ▽

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/graydynyoung/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2060612301
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2052270827
https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2060722302
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2060612301
https://disqus.com/by/karpathy/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2052284520
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2052270827
https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2055459713
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2052284520
https://disqus.com/by/graydynyoung/
https://disqus.com/by/jamesblaha/
https://disqus.com/by/karpathy/
https://disqus.com/by/jamesblaha/

 • Reply •

James Blaha • 3 years ago> karpathy

Yeah sampling fine with smaller networks on the same machine. For
example a -num_layers 3 -rnn_Size 300 samples fine, im not 100%
sure it is related to size but it definitely could be.
△ ▽

 • Reply •

4ω⁴/3c³ • 3 years ago

see more

Featured by Andrej's Blog

I used 400 Mb of NSF Research Awards abstracts 1990-2003 for learning this char-RNN
with 3 layers and size 1024. The generated abstracts seem almost reasonable and leave
you with a feeling that you didn't quite understood the meaning because you're not
familiar with nuances of special terms. Here they are, and here's one example:

Title : Electoral Research on Presynaptic Problems in Subsequent Structure
Type : Award
NSF Org : DMS
Latest
Amendment
Date : July 10, 1993
File : a9213310

Award Number: 9261720
Award Instr.: Standard Grant
Prgm Manager: Phillip R. Taylor
 OCE DIVISION OF OCEAN SCIENCES
 GEO DIRECTORATE FOR GEOSCIENCES
Start Date : September 1, 1992
Expires : February 28, 1992 (Estimated)
Expected
Total Amt. : $96200 (Estimated)
Investigator: Mark F. Schwartz (Principal Investigator current)
Sponsor : U of Cal Davis
 OVCR/Sponsorptinch Ave AMbEr, Med Ot CTs, IN 428823462 812/471

NSF Program : 1670 CHEMICAL OCEANOGRAPHY
Fld Applictn: 0204000 Oceanography

31△ ▽

 • Reply •

karpathy • 3 years agoMod > 4ω⁴/3c³

Haha this is GOLDEN :D Write it up into a small blog post I'm sure people would
love to hear more about some of these :)
3△ ▽

 • Reply •

Yifei Teng • 2 months ago> 4ω⁴/3c³

Curiously the expiration date is BEFORE the starting date :)
△ ▽

Ankit • 2 years ago> 4ω⁴/3c³

Hi,
This is great result. I wanted to replicate it.
At the risk of sounding dumb, how much time did it take to train on this dataset.
I am trying to train on the same dataset (finally around 400Mb) and using a GPU (2
GB Nvidia 630M). Still, the estimated time is 3000 hours.

�

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/jamesblaha/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2052306153
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2052284520
https://disqus.com/by/4_3c/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2073825449
http://disq.us/url?url=http%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2FNSF%2BResearch%2BAward%2BAbstracts%2B1990-2003%3Ar56bo-9OAIeiB0tncubitW-ZdHY&cuid=3095056
https://disq.us/url?url=https%3A%2F%2Fdl.dropboxusercontent.com%2Fu%2F60518165%2FLepra%2Frnn%2Fnsf-awards.txt%3A1PkPZAaM0BAJaZ-2Slp3dpBWWw4&cuid=3095056
https://disqus.com/by/karpathy/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2073833486
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2073825449
https://disqus.com/by/yifeiteng/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-3611178263
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2073825449
https://disqus.com/by/disqus_RzM3RKlXVM/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2269101499
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2073825449
https://disqus.com/by/jamesblaha/
https://disqus.com/by/4_3c/
https://disqus.com/by/karpathy/
https://disqus.com/by/yifeiteng/
https://disqus.com/by/disqus_RzM3RKlXVM/

Andrej Karpathy blog karpathy Musings of a Computer Scientist.

 • Reply •△ ▽

 • Reply •

4ω⁴/3c³ • 2 years ago> Ankit

I trained it overnight (for 10-20 hours, not more). I used one Amazon
g2.2xlarge instance for this. I don't know the exact model of GPU it has,
Amazon only says that it's "High-performance NVIDIA GPUs, each with
1,536 CUDA cores and 4GB of video memory"

I have no idea whether it would work significantly better if trained for 3000
hours as you estimate. Me being an experimental physicist and having no
training in neural networks or machine learning whatsoever, I just waited until
the slope or the error vs. time graph (in log-log scale) dropped qualitatively
(as in second-order phase transition, so to speak). From my experience with
char-rnn, the first "phase transition" usually happens in the first tens of
minutes, the second transition in a few hours. I stop after the second
transition. I have no idea whether this ad-hoc approach of mine is used by
anyone at all in ML/neural-net community or makes any sense in this field at
all.
3△ ▽

 • Reply •

Ankit • 2 years ago> 4ω⁴/3c³

Thank you for replying.
I was trying to train it using my personal laptop without any code
modification or early-stop criteria. My laptop has a single GPU which
has around 96 CUDA cores and 2 GB memory. That is why it was
taking forever (read 3000 hours) to train.
I would have to find and use some dedicated sever for this much
amount of data to train.
Thanks once again for explaining your approach.
△ ▽

4ω⁴/3c³ • 2 years ago> Ankit

You don't need any modification to stop it at any moment. During
training, it makes checkpoints (files with .t7 extension) every 1000
iterations or so (this number is configurable). Just kill the training
process whenever you please and use the latest .t7 checkpoint file
for sampling with sample.lua

And if you decide to use some rented computing resources, I suggest
you use the g2.2xlarge instance as I did. If you get it as "Spot
instance" kind, it costs about $0.07 per hour. That is, seven cents per
hour.

Share ›

Share ›

Share ›

https://github.com/karpathy
https://disqus.com/by/4_3c/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2269137671
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2269101499
https://disqus.com/by/disqus_RzM3RKlXVM/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2270808375
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2269137671
https://disqus.com/by/4_3c/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2271169009
http://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2270808375
https://disqus.com/by/4_3c/
https://disqus.com/by/disqus_RzM3RKlXVM/
https://disqus.com/by/4_3c/

 karpathy

https://twitter.com/karpathy

