CS448f: Image Processing For Photography and Vision

The Gradient Domain

Image Gradients

- We can approximate the derivatives of an image using differences

- Equivalent to convolution by [-1 1]
- Note the zero boundary condition

Image Derivatives

- We can get back to the image by integrating
- like an integral image

- Differentiating throws away constant terms
- The boundary condition allowed us to recover it

Image Derivatives

- Can think of it as an extreme coarse/fine decomposition
- coarse = boundary term
- fine = gradients

In 2D

- Gradient in $\mathrm{X}=$ convolution by $[-11]$
- Gradient in $\mathrm{Y}=$ convolution by $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- If we take both, we have $2 n$ values to represent n pixels
- Must be redundant!

Redundancy

- $d(d m / d x) / d y=d(d m / d y) / d x$
- Y derivative of X gradient $=X$ derivative of Y gradient

Gradient Domain Editing

- Gradient domain techniques
- Take image gradients
- Mess with them
- Try to put the image back together
- After you've messed with the gradients, the constraint on the previous slide doesn't necessarily hold anymore.

The Poisson Solve

- Convolving by [-1 1] is a linear operator: D_{x}
- Taking the Y gradient is some operator: D_{y}
- We have desired gradient images g_{x} and g_{y}
- We want to find the image that best produces them
- Solve for an image m such that:

The Poisson Solve

- How? Using Least Squares:

$$
\begin{gathered}
{\left[D_{x}^{T} D_{y}^{T}\left[\begin{array}{c}
D_{x} \\
D_{y}
\end{array}\right] m=\left[D_{x}^{T} D_{y}^{T}\left[\begin{array}{l}
g_{x} \\
g_{y}
\end{array}\right]\right.\right.} \\
\left(D_{x}^{T} D_{x}+D_{y}^{T} D_{y}\right) m=D_{x}^{T} g_{x}+D_{y}^{T} g_{y}
\end{gathered}
$$

- This is a Poisson Equation

The Poisson Solve

- $\mathrm{D}_{\mathrm{x}}=$ Convolution by [-11]
- $\mathrm{D}_{\mathrm{x}}{ }^{\top}=$ Convolution by [1-1]
- The product = Convolution by [1-2 1]
- Approximate second derivative
- $D_{x}^{\top} D_{x}+D_{y}^{\top} D_{y}=$ convolution by

$$
\begin{array}{ccc}
& 1 & \\
1 & -4 & 1 \\
& 1 &
\end{array}
$$

The Poisson Solve

- We need to invert:

$$
\left(D_{x}^{T} D_{x}+D_{y}^{T} D_{y}\right) m=D_{x}^{T} g_{x}+D_{y}^{T} g_{y}
$$

- How big is the matrix?
- Anyone know any methods for inverting large sparse matrices?

Solving Large Linear Systems

- $A=D_{x}^{\top} D_{x}+D_{y}^{\top} D_{y}$
- $b=D_{x}{ }^{\top} g_{x}+D_{y}{ }^{\top} g_{y}$
- We need to solve $A x=b$

1) Gradient Descent

- $\mathrm{x}=$ some initial estimate
- For (lots of iterations):

$$
\begin{aligned}
& r=b-A x \\
& e=r^{\top} r \\
& \alpha=e / r^{\top} A r \\
& x+=\alpha r
\end{aligned}
$$

2) Conjugate Gradient Descent

- $\mathrm{x}=$ some initial estimate
- $d=r=A x-b$
- $\mathrm{e}_{\text {new }}=\mathrm{r}^{\top} r$
- For (fewer iterations):

$$
\begin{aligned}
& \alpha=e_{\text {new }} / d^{\top} A d \\
& x+=\alpha d \\
& r=b-A x \\
& e_{\text {old }}=e_{\text {new }} \\
& e_{\text {new }}=r^{\top} r \\
& d=r+d e_{\text {new }} / e_{\text {old }}
\end{aligned}
$$

- (See An Introduction to the Conjugate Gradient Method Without the Agonizing Pain)

3) Coarse to Fine Conj. Grad. Desc.

- Downsample the target gradients
- Solve for a small solution
- Upsample the solution
- Use that as the initial estimate for a new conj. grad. descent
- Not too many iterations required at each level
- This is what ImageStack does in -poisson

4) FFT Method

- We're trying to undo a convolution
- Convolutions are multiplications in Fourier space
- Therefore, go to Fourier space and divide

Applications

- How might we like to mess with the gradients?
- Let's try some stuff

Applications

- Poisson Image Editing
- Perez 2003
- GradientShop
- Bhat 2009
- Gradient Domain HDR Compression
- Fattal et al 2002
- Efficient Gradien-Domain Compositing Using Quadtrees
- Agarwala 2007
- Coordinates for Instant Image Cloning
- Farbman et al. 2009

