
CS448f: Image Processing For
Photography and Vision

Wavelets Continued

Last Time:

• Last time we saw the Daubechies filter
satisfied the following:
– fully orthogonal

– four taps

– as smooth as possible

– wavelet filter a simple modification of the scaling
filter

• Why did we care about our wavelet basis
functions being orthogonal?

Orthogonality

• Why did we care about our wavelet basis
functions being orthogonal?

– Easy to invert

– Orthogonal transforms preserve distance

• We can probably relax this requirement,
provided we get something that’s still easy to
invert

Lifting

• Let’s construct our filters using the following
sequence:
– Divide the inputs into evens and odds

– Add some function of the odds to the evens

– Add some function of the evens to the odds

– Repeat as long as you like

– Eventually the evens form a coarse layer and the
odds form a fine layer

• This is easy to invert

Forward Transform

Input

Evens

Odds

Filter 1

+

+

Filter 2

Coarse

Fine

Inverse Transform

Output

Evens

Odds

Filter 1

-

-

Filter 2

Coarse

Fine

What makes a good fine layer?

• Average value is 0

• So filter 1 should probably be something that
enforces that.

What makes a good coarse layer?

• Why is subsampling bad?

– Some pixels in the input count more than others

• Each pixel in the input should count equally

– E.g. Averaging down

• Something should sum up to 1

Let’s track the linear transform

1

1

1

1

1

1

1

1

Divide the rows into even and odd

1

1

1

1

1

1

1

1

Add a filter of the even rows to the
odd rows: [-½ 0 -½]

1

-½ 1 -½

1

-½ 1 -½

1

-½ 1 -½

1

-½ 1

The odd rows are now a fine layer

1

-½ 1 -½

1

-½ 1 -½

1

-½ 1 -½

1

-½ 1

Add a filter of the odd rows to the
even rows: [¼ 0 ¼]

1

-½ 1 -½

1

-½ 1 -½

1

-½ 1 -½

1

-½ 1

Add a filter of the odd rows to the
even rows: [¼ 0 ¼]

¾ ¼ -1/8

-½ 1 -½

-1/8 ¼ ¾ ¼ -1/8

-½ 1 -½

-1/8 ¼ ¾ ¼ -1/8

-½ 1 -½

-1/8 ¼ ¾ ¼

-½ 1

Why did I pick ¼?

¾ ¼ -1/8

-½ 1 -½

-1/8 ¼ ¾ ¼ -1/8

-½ 1 -½

-1/8 ¼ ¾ ¼ -1/8

-½ 1 -½

-1/8 ¼ ¾ ¼

-½ 1

In the coarse layer, each input pixel now counts
equally (sum along columns is constant)

¾ ¼ -1/8

-½ 1 -½

-1/8 ¼ ¾ ¼ -1/8

-½ 1 -½

-1/8 ¼ ¾ ¼ -1/8

-½ 1 -½

-1/8 ¼ ¾ ¼

-½ 1

Lifting

Input

Evens

Odds

Predict

-

+ Coarse

Fine

Update

- Using an interpolation for the predict filter gives
an appropriate fine layer

- The update filter can be computed from the
predict filter

Wavelets

• A coarse/fine decomposition that is fast to
compute and takes no more memory than the
original

• Better or worse than a Laplacian pyramid?

