CS448f: Image Processing For Photography and Vision

Wavelets Continued

Last Time:

- Last time we saw the Daubechies filter satisfied the following:
- fully orthogonal
- four taps
- as smooth as possible
- wavelet filter a simple modification of the scaling filter
- Why did we care about our wavelet basis functions being orthogonal?

Orthogonality

- Why did we care about our wavelet basis functions being orthogonal?
- Easy to invert
- Orthogonal transforms preserve distance
- We can probably relax this requirement, provided we get something that's still easy to invert

Lifting

- Let's construct our filters using the following sequence:
- Divide the inputs into evens and odds
- Add some function of the odds to the evens
- Add some function of the evens to the odds
- Repeat as long as you like
- Eventually the evens form a coarse layer and the odds form a fine layer
- This is easy to invert

Forward Transform

Inverse Transform

What makes a good fine layer?

- Average value is 0
- So filter 1 should probably be something that enforces that.

What makes a good coarse layer?

- Why is subsampling bad?
- Some pixels in the input count more than others
- Each pixel in the input should count equally
- E.g. Averaging down
- Something should sum up to 1

Let's track the linear transform

1

Divide the rows into even and odd

1
1

1
1
1

Add a filter of the even rows to the odd rows: $[-1 / 20-1 / 2]$

The odd rows are now a fine layer

1

$\begin{array}{lll}-1 / 2 & 1 & -1 / 2\end{array}$

$$
1
$$

$$
\begin{array}{lll}
-1 / 2 & 1 & -1 / 2
\end{array}
$$

$$
1
$$

$$
\begin{array}{lll}
-1 / 2 & 1 & -1 / 2
\end{array}
$$

$$
1
$$

$$
-1 / 2
$$

Add a filter of the odd rows to the even rows: [$1 / 41 / 4$]

Add a filter of the odd rows to the even rows: [$1 / 401 / 4$]

3/4	1/4	-1/8					
-1/2	1	-1/2					
-1/8	$1 / 4$	3/4	1/4	-1/8			
		-1/2	1	$-1 / 2$			
		-1/8	$1 / 4$	3/4	1/4	-1/8	
				-1/2	1	$-1 / 2$	
				$\stackrel{\downarrow}{-1 / 8}$	$\frac{\downarrow}{1 / 4}$	$\stackrel{\downarrow}{3 / 4}$	1/4
						-1/2	${ }_{1}$

Why did I pick ¼?

$3 / 4$	$1 / 4$	$-1 / 8$					
$-1 / 2$	1	$-1 / 2$					
$-1 / 8$	$1 / 4$	$3 / 4$	$1 / 4$	$-1 / 8$			
		$-1 / 2$	1	$-1 / 2$			
		$-1 / 8$	$1 / 4$	$3 / 4$	$1 / 4$	$-1 / 8$	
				$-1 / 2$	1	$-1 / 2$	
				$-1 / 8$	$1 / 4$	$3 / 4$	$1 / 4$
						$-1 / 2$	1

In the coarse layer, each input pixel now counts equally (sum along columns is constant)

$3 / 4$	$1 / 4$	$-1 / 8$					
$-1 / 2$	1	$-1 / 2$					
$-1 / 8$	$1 / 4$	$3 / 4$	$1 / 4$	$-1 / 8$			
		$-1 / 2$	1	$-1 / 2$			
		$-1 / 8$	$1 / 4$	$3 / 4$	$1 / 4$	$-1 / 8$	
				$-1 / 2$	1	$-1 / 2$	
				$-1 / 8$	$1 / 4$	$3 / 4$	$1 / 4$
						$-1 / 2$	1

Lifting

- Using an interpolation for the predict filter gives an appropriate fine layer
- The update filter can be computed from the predict filter

Wavelets

- A coarse/fine decomposition that is fast to compute and takes no more memory than the original
- Better or worse than a Laplacian pyramid?

