
CS448f: Image Processing For 
Photography and Vision

Wavelets Continued



Last Time:

• Last time we saw the Daubechies filter 
satisfied the following:
– fully orthogonal

– four taps

– as smooth as possible

– wavelet filter a simple modification of the scaling 
filter

• Why did we care about our wavelet basis 
functions being orthogonal?



Orthogonality

• Why did we care about our wavelet basis 
functions being orthogonal?

– Easy to invert

– Orthogonal transforms preserve distance

• We can probably relax this requirement, 
provided we get something that’s still easy to 
invert



Lifting

• Let’s construct our filters using the following 
sequence:
– Divide the inputs into evens and odds

– Add some function of the odds to the evens

– Add some function of the evens to the odds

– Repeat as long as you like

– Eventually the evens form a coarse layer and the 
odds form a fine layer

• This is easy to invert
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Inverse Transform
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What makes a good fine layer?

• Average value is 0

• So filter 1 should probably be something that 
enforces that.



What makes a good coarse layer?

• Why is subsampling bad?

– Some pixels in the input count more than others

• Each pixel in the input should count equally

– E.g. Averaging down

• Something should sum up to 1



Let’s track the linear transform
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Divide the rows into even and odd
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Add a filter of the even rows to the 
odd rows: [-½ 0 -½]
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The odd rows are now a fine layer
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Add a filter of the odd rows to the 
even rows: [ ¼ 0 ¼ ]
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Add a filter of the odd rows to the 
even rows: [ ¼ 0 ¼ ]
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Why did I pick ¼?
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In the coarse layer, each input pixel now counts 
equally (sum along columns is constant)
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Lifting
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- Using an interpolation for the predict filter gives 
an appropriate fine layer

- The update filter can be computed from the 
predict filter



Wavelets

• A coarse/fine decomposition that is fast to 
compute and takes no more memory than the 
original

• Better or worse than a Laplacian pyramid?


