
CS 45, Lecture 12
Debugging and Profiling

Spring 2023 
Akshay Srivatsan, Ayelet Drazen, Jonathan Kula 

1

Administrivia

● Assignment 4 is due tonight! It covers all things Git. Reach out if you
need more time.

● Assignment 5 will come out sometime tonight or tomorrow!

● Thank you for the feedback 💘

2

What we will cover today

In today's lecture, we will learn about :

- Basic debugging techniques such as printing and logging
- Debugging tools
- Profiling your code for memory leaks, resource management, timing

This lecture may feel like a bunch of tools and demos. You don't need to
become an expert in these now, but it's worth knowing they are out there!

3

Installations

Throughout this lecture, we will be looking at a number of different tools.

Some of these won't be installed on your machine but feel free to install as
we go. For Python tools, use:

4

pip3 install <name-of-tool>

Introduction to Debugging

What’s the #1 issue I saw student having when working as a CA?

Not knowing how to debug.

5

History of Debugging

The terminology of the term debugging has a
fun history to it.

Note by Thomas Edison where he used the
term bug to describe a technical error. 6

History of Debugging

The terminology of the term debugging has a
fun history to it.

In 1878, Thomas Edison was the first to use the
term “bug” to describe a technical error.

Note by Thomas Edison where he used the
term bug to describe a technical error. 7

History of Debugging

In 1945, the first computers were being built.

8

History of Debugging

In 1945, the first computers were being built.

Mark III was one of these computers that was
being built at Harvard. Grace Hopper was
developing Mark III when she encountered a
problem with its functionality. Mark III

9

History of Debugging

In 1945, the first computers were being built.

Mark III was one of these computers that was
being built at Harvard. Grace Hopper was
developing Mark III when she encountered a
problem with its functionality.

After running some tests, she decided to look
inside and found an actual moth, which lead to
the usage of the word debugging in
programming.

Mark III

10

History of Debugging

In 1945, the first computers were being built.

Mark III was one of these computers that was
being built at Harvard. Grace Hopper was
developing Mark III when she encountered a
problem with its functionality.

After running some tests, she decided to look
inside and found an actual moth, which lead to
the usage of the word debugging in
programming.

Mark III

Note by Grace Hopper with moth attached.
11

Print Debugging

The simplest approach to debugging is to add print statements to figure out
where your issue is.

12

Print Debugging

The simplest approach to debugging is to add print statements to figure out
where your issue is.

This approach is known as printf() debugging (so called after the C
function by the same name).

13

Print Debugging

The simplest approach to debugging is to add print statements to figure out
where your issue is.

This approach is known as printf() debugging (so called after the C
function by the same name).

“The most effective debugging tool is careful thought, coupled with
judiciously placed print statements.”

– Brian Kernighan, Unix for Beginners

14

Print Debugging

15

Print Debugging

Each language has a standard printing function that can be used to print to
standard output or standard error:

Python
Standard Output Standard Error

C++
Standard Output

Standard Error

16

print("Inside if-statement") print("Inside if-statement", file=sys.stderr)

std::cout << "Inside if-statement" << std::endl;

std::cerr << "Inside if-statement" << std::endl;

Print Debugging

The placement and structure of your print statements is important.

17

Print Debugging

The placement and structure of your print statements is important.

1. Wording matters: “MADE IT HEEEEEERRRRREEE” is less helpful than
“Inside else case to check if getData succeeded”

18

Print Debugging

The placement and structure of your print statements is important.

1. Wording matters: “MADE IT HEEEEEERRRRREEE” is less helpful than
“Inside else case to check if getData succeeded”

2. Print statements are useful inside of if-else statements to see which
branch of code execution is taken. They are also useful after a loop or a
function call to see that the loop / function exits.

19

Print Debugging

20

Logging

A more complex version of print debugging is logging. Logging is used to
capture information about a system run. You can think of logging as a more
structured and systematic framework to add print statements.

21

Logging

A more complex version of print debugging is logging. Logging is used to
capture information about a system run. You can think of logging as a more
structured and systematic framework to add print statements.

It is used as part of industry standard for implementation of larger systems.

22

Logging

A more complex version of print debugging is logging. Logging is used to
capture information about a system run. You can think of logging as a more
structured and systematic framework to add print statements.

It is used as part of industry standard for implementation of larger systems.

At a bare minimum, logging should allow you to do everything that print
statements do: print messages to standard output and standard error.

23

Logging

Logging is normally done by designating different “levels” for each log
message.

Different log levels have different levels of importance. A log message of
type ERROR requires immediate attention while a log message of type TRACE
might just be a “nice to have” confirmation that a given piece of code is
executing.

24

Logging

25

ERROR Extremely high severity, application will abort

WARNING High severity, requires immediate attention

INFO Moderate severity, reporting important information

DEBUG Used for debugging purposes

TRACE Used for tracing execution of code

Logging

Log levels allow a developer to toggle between different levels and filter
based on these levels.

A developer might only be interested in WARNING or ERROR messages for
a certain run

In general, the default level of logging for production level code is INFO

26

Logging

Some languages have a built-in logging library such a Python. Others, such
as C++, require you to implement a logging library.

Here is logging in Python:

import logging

logging.debug(“We’re debugging. Something happened!”)
logging.info(“For your info, something happened.")
logging.warning(“A warning occurred. Beware!”)
logging.error(“Something is in error. Go fix it.”)
logging.critical(“Critical condition. Go seek shelter. NOW.”)

27

Logging: Python

28

CRITICAL Extremely high severity, application will abort

ERROR High severity, requires immediate attention

WARNING Moderate severity, detected an unexpected problem

INFO Moderate severity, reporting important information

DEBUG Used for debugging purposes

Logging: Python

By default, the logging level is set to WARNING which means only the last
three lines will get printed:

import logging

logging.debug(“We’re debugging. Something happened!”)
logging.info(“For your info, something happened.)
logging.warning(“A warning occurred. Beware!”)
logging.error(“Something is in error. Go fix it.”)
logging.critical(“Critical condition. Go seek shelter. NOW.”)

29

Logging: Python

We can change the logging level to increase or decrease the number of
logging messages we see:

import logging

logging.basicConfig(level = logging.DEBUG)

logging.debug(“We’re debugging. Something happened!”)
logging.info(“For your info, something happened.")
logging.warning(“A warning occurred. Beware!”)
logging.error(“Something is in error. Go fix it.”)
logging.critical(“Critical condition. Go seek shelter. NOW.”)

30

Logging: Python

Logging allows you to send the output to a variety of different places, not
just standard output and standard error.

You can send your log messages to a file, a remote log server, a window
event log, or a database.

import logging

logging.basicConfig(filename=‘example.log’, level=logging.DEBUG)

logging.debug(“We’re debugging. Something happened!”)
logging.info(“For your info, something happened.)

31

Advanced Logging

Let's take a look at how to implement logging in Python, including some
fancy features with formatting and customization!

[Python Logging Demo]

32

Logging

Third party logs are useful when you use external libraries or dependencies.

In UNIX, most programs write their logs in /var/log

Example: if you have an issue where all of your apps freeze, you might
find the /var/log/system.log file (on a Mac), the /var/log/journal
file (on Linux), or the Event Viewer (on Windows) which will give you
more information about why your apps are crashing

33

Debuggers

When print debugging and logging is not enough, you should use a debugger.
A debugger is a program that allows you to examine another program in
order to detect errors in that other program.

With a debugger, you can:

■ Halt execution of the program when it reaches a certain line
■ Step through the program one line at a time
■ Inspect values of variables after the program crashes

34

Debuggers

Many programming languages come with some sort of default debugger:

Python → pdb debugger

C/C++ → gdb and lldb are both C/C++ debuggers

Go → Delve is a GoLang debugger

Java → jdb is a Java debugger

In general, when choosing a debugger, you simply want to find one that is
compatible with the language you are coding in.

35

Debuggers: pdb

Some common debugging commands:

 - displays some (around 11) lines of the program

 - execute a single line, and step into called function (if necessary)

 - execute a single line, do not step into called function

 - prints a variable or symbol

 - set a breakpoint

36

list

step

next

print

break

Debuggers: pdb

Let's deep dive into the pdb debugger!

To load a program with pdb:

37

python3 -m pdb bmi.py

Debuggers: pdb

Let's deep dive into the pdb debugger!

To load a program with pdb:

38

python3 -m pdb bmi.py

Imports pdb as a module
to be run on mbi.py

Debuggers: pdb

Let's deep dive into the pdb debugger!

To load a program with pdb:

39

python3 -m pdb bmi.py

Imports pdb as a module
to be run on mbi.py

Name of program we are
running

Let's practice!

I've uploaded a buggy program called area_of_rectangle.py.

Let's try to use pdb to debug it!

Try adding logging statements using the logging library.

40

python3 -m pdb area_of_rectangle.py

curl -Lo area_of_rectangle.py

http://stanford-cs45.github.io/res/lec11/area_of_rectangle.py

Debuggers: Life Hack (for C/C++)

Using gdb or lldb to find where your program is crashing!

41

Debuggers: Life Hack (for C/C++)

Using gdb or lldb to find where your program is crashing!

We need to compile our code:

42

g++ -std=c++11 -g -o weather_report weather_report.cc

Debuggers: Life Hack (for C/C++)

Using gdb or lldb to find where your program is crashing!

We need to compile our code:

43

g++ -std=c++11 -g -o weather_report weather_report.cc

Version of C++
we want to use

Debuggers: Life Hack (for C/C++)

Using gdb or lldb to find where your program is crashing!

We need to compile our code:

44

g++ -std=c++11 -g -o weather_report weather_report.cc

Version of C++
we want to use

Create debugging
symbols

Debuggers: Life Hack (for C/C++)

Using gdb or lldb to find where your program is crashing!

We need to compile our code:

To run the program, we can use:

45

g++ -std=c++11 -g -o weather_report weather_report.cc

./weather_report

Debuggers: Life Hack (for C/C++)

Using gdb or lldb to find where your program is crashing!

We need to compile our code:

To run the program, we can use:

To run the program under lldb, we can use:

46

g++ -std=c++11 -g -o weather_report weather_report.cc

./weather_report

lldb weather_report

Debuggers: Life Hack (for C/C++)

Once your program is in gdb or lldb, you need to run it:

47

Debuggers: Life Hack (for C/C++)

Once your program is in gdb or lldb, you need to run it:

We need to compile our code:

48

(lldb) run

Debuggers: Life Hack (for C/C++)

Once your program is in gdb or lldb, you need to run it:

We need to compile our code:

Once it crashes, you can run backtrace (or bt) to find where it crashed:

49

(lldb) run

(lldb) bt

Web Debugging

Most modern browsers support built-in debugging tools.

You can enter developer mode by pressing F12 or hitting Cmd +
Option + I

You can navigate and examine the files, add breakpoints, trace
execution, and add logging statements.

50

Compiler Errors

Compiler errors are your friends 😁

Always look at the line number and where the error occurred.

Look up compiler errors online on sites like StackOverflow. If you’re
running into an error, it’s most likely someone else has run into that
same error before.

51

Specialized Tools

We can debug code even if we don’t have the source code. One example is
debugging system calls

System calls are functions that are executed by the kernel (which is the
computer program at the core of a computer’s operating system and
generally has complete control over everything in the system).

We don’t have access to the internal implementations of system calls
which means we can’t look inside to see what’s going on in the code.

52

Specialized Tools

53

U
se

r
m

od
e

Ke
rn

el
 m

od
e

Restricted Operations (e.g I/O, hardware
access, etc…)

User Applications

Kernel (your OS code)

Syscalls
give restricted access to kernel
mode instructions

kernel has unrestricted access
to devices, memory etc…

Specialized Tools

54

We can use a tool called strace in order to trace system calls.

strace allows us to observe the execution of a system call.

We don’t have access to the internal implementations of system calls
which means we can’t look inside to see what’s going on in the code.

Testing Your Code

55

A key part of debugging is testing your code :)

You can choose a testing framework to use in order to implement your tests.

There are also tools that will report the test coverage for your tests (check
out coverage for Python). This is part of being a good programmer:
ensuring that you commit code in small chunks and test each chunk.

Code Profiling

56

Profilers are good for when your code runs as expected (yay!) but is
inefficient…

Profilers help you understand which parts of your program take up the most
time and resources so you can focus on optimizing those parts.

"Premature optimization is the root of all evil." - Donald Knuth

Code Profiling

57

Profilers come in two flavors:

Tracing Profilers: keep a record of every function call your program makes.
Advantages: more accurate analysis
Disadvantages: add a lot of overhead to the program
Examples: gprof, VTune,

Sampling Profilers: periodically probe program to record the program's stack.
Advantages: does not disturb application at run time
Disadvantages: provides approximations
Examples: OProfile, perf, AMD uProf

Code Profiling

58

Python has a built in code profiler called cProfile that will allow us to
identify bottlenecks.

python3 -m cProfile -s tottime site_scraper.py

Code Profiling

59

Sometimes we want to do line by line analysis of a specific function. Is there
a single line in this function that is taking the most time?

kernprof -l -v site_scraper.py

Let's practice!

60

Try using cProfile and line_profiler on your area_of_rectangle.py
program.python3 -m cProfile area_of_rectangle.py

kernprof -l -v area_of_rectangle.py

Timing Your Code

61

If your code takes a really long time to run, this could be an indication of an
issue.

Ideally, you need to figure out how much time the specific program took to
run. (There are other things running on your computer that may be running in
the background and slowing things down.)

Timing Your Code

62

time is a command that is used to execute a program and print a real time
analysis of how long the program took to execute.

In a zsh shell, there is a time keyword. If you want to use the time command,
type: command time <name-of-program>

Example:
time ./memory_leak or time python3 site_scraper.pytime ./memory_leak time python3 site_scraper.py

Timing Your Code

63

The time command will report statistics on three different "types" of times:
real, user, and sys:

adrazen$: time ./program

real 0m0.193s

user 0m0.012s

sys 0m0.056s

real is wall clock time (from start to finish)

user is time spent is user mode (for this program)

sys is time spent in kernel mode (for this program)

To get the actual CPU time your program used, add user + sys

Note that real will include time waiting for I/O, or time used by other processes.

Memory Access Tools

64

Memory access tools allow us to identify memory leaks and inefficient
memory usage.

valgrind is a memory access and memory leak detection tool for
GNU/Linux systems.

leaks is a similar tool for macOS systems.

Memory Access Tools

Memory access tools allow us to identify memory leaks and inefficient
memory usage.

65

leaks --atExit -- ./YOUR_PROGRAM_NAME

valgrind --leak-check=yes YOUR_PROGRAM_NAME

Memory Access Tools

66

Memory Access Tools

67

Linters, Static Analyzers and More

68

There are many, many, MANY more tools you can use to analyze and clean up
your code!

There are even ones to correct your spelling (writegood).

Reach out to us if you are interested in learning more about any of these.

Introduction to Debugging

Credits: Julia Evans 69

