
CS 45, Lecture 5
Text Editors

Akshay Srivatsan, Ayelet Drazen, Jonathan Kula

Spring 2023

Outline

Contents
1 Text Editing: An Overview 1

1.1 Rich Text . 1
1.2 Plain Text Editors . 1
1.3 Learning a new editor . 2
1.4 Why vim? Or a TUI editor at all? . 2

2 Vim 2
2.1 A Quick History . 2
2.2 A Modal Editor . 2
2.3 Learning to Navigate vim . 2
2.4 Windows & Buffers . 3
2.5 Configuring vim . 3
2.6 Demoing .vimrc . 3

3 Visual Studio Code 3
3.1 What’s an IDE? . 3
3.2 Why VSCode? . 4
3.3 VSCode Demo . 4

1 Text Editing: An Overview
1.1 Rich Text
When we think about editing a document, we usually think of doing that in a rich text editor, something
like Word or Google Docs.

Rich text is for humans communicating with humans– its elements are structured around elements of prose,
such as words, paragraphs, headings, etc., and its features are centered around making consuming written
text easier for humans– things like varying fonts, emphasizing text with bold, italic, or underline, the ability
to insert pictures or other multimedia, and so on and so forth.

However, while this information is helpful and sometimes really necessary in human-to-human communica-
tion, it’s unnecessary and gets in the way when we’re desiring to communicate with a computer (or give it
instructions). This is why we use plain text for computers!

1

1.2 Plain Text Editors
Lots of different kinds of programs have been developed to edit plain text– in fact, it’s really one of the
core affordances a computer offers. Some plain text editors, like Windows’ Notepad or macOS’ TextEdit
are extremely basic, and fulfill the mantle of a plain text editor with no frills. However, knowing how we
frequently use plain text to communicate, configure, and program computers, many more plain text editors
integrate additional tools to make these tasks easier.

Computer programs in general tend to fall into one of three categories:

1. GUI (Graphical User Interface) programs. These are programs that display a graphical interface in
some way, and are the kinds of applications you’re almost certainly most familiar with.

2. TUI (Text User Interface) programs. These are programs that display a sort of imitation of a graphical
interface using text within a terminal. These are distinct from CLI programs in that the application
stays open and allows for continued operation, taking over the terminal and designed for interaction
directly with the user via the keyboard and sometimes mouse.

3. CLI (Command Line Interface) programs. These are programs that are usable only from the command
line, by invoking the program with a set of flags and arguments, and potentially information from
standard input.

As a caveat, TUI applications especially are often fairly inaccessible to screen readers; since they just display
information– including UI– as a bunch of text that isn’t distinguished or hierarchical in any way.

1.3 Learning a new editor
No matter what kind of editor you choose to jump into learning, there’s going to be a learning curve. Our
recommendation is to choose one GUI editor and one TUI editor, then stick with them for a while. We’d
estimate that you’ll reach the same speed as you’d use any other editor after about 10-20 hours of use, and
often will be much faster than others after about 20 hours of use.

Don’t be afraid to look some stuff up, too– often, there’s a faster way to go about doing things that’s just a
google search away!

Since we expect that you all are pretty familiar with GUI editors (such as PyCharm), we’ll jump into doing
a short demo with vim.

1.4 Why vim? Or a TUI editor at all?
The biggest reason is for remote editing. Computers whose purpose is to serve content or provide resources–
i.e. servers– often do not have GUIs installed at all, as they are a significant resource use overhead that has
no good purpose when CLI and TUI applications exist that don’t require all that overhead. Thus, it’s a
good idea to get used to some editor you can use via only a terminal.

2 Vim
2.1 A Quick History
vim was inspired by and spun off of an editor called vi, and stands for VI iMitation (or VI iMproved,
depending on who you ask). vi was one of the first TUI editors, based on the line-editor ed (and also the
visual mode of a CLI tool called ex), which required you to edit line by line using certain commands.

vi, and vim, continue to use that idea of commands and modes!

2.2 A Modal Editor
vim uses different “modes” to control editing.

2

1. You always start in normal mode, used for navigating around the file

2. You press i to enter insert mode, to write new text

3. You press R to enter replace mode, to overwrite text

4. You press v to enter visual mode, for copying or deleting lines or blocks of text at a time

5. You press : to enter command mode, which allows you to do all sorts of things (like save, quit,
find-replace, etc.).

2.3 Learning to Navigate vim
Example 2.1 (codeblock). We did a demo in class. You can access the demo using the commands below:

(Curious what these commands do? We introduced a handy-dandy website called explainshell.com that can
break down commands for you using text from the man pages. In the case of the commands above, the first
one (curl) downloads a file, and the second instructs vim to open the file that was downloaded.)

You should open the file in vim and try navigating through it; we did this exercise for 15 or so minutes live
in class.

2.4 Windows & Buffers
We’re all used to the idea that each window is responsible for one file. If you want to open a new file in
another window, you can do that.

vim plays with this idea a little bit. Buffers refer to open files, and are an abstract concept. A single buffer
may be open in one or more windows!

Meanwhile, windows are “views” into a buffer. This means you could have multiple windows open to the
SAME buffer!– if you do this, that means your changes to the buffer in one window would instantly reflect
in the other. This is useful if e.g. you want to scroll to multiple different parts of a file at once.

:q always closes the current window. You can also “split” a window using the :sp (“split”) command, or
vertically with the :vsp command.

2.5 Configuring vim
You can customize your installation of vim by writing a .vimrc file in your home directory (i.e. /.vimrc).

.vimrc files contain a list of commands that run when you start vim. For example, mine makes the mouse
work, adds line numbers, and makes backspace and the arrow keys work in a manner I’d expect from an
editor.

You can also add 3rd-party plugins to vim, either manually or using a plugin manager like vundle.

2.6 Demoing .vimrc
Example 2.2 (codeblock). We did a demo in class. You can access the demo using the commands below:

(The above command will open a temporary copy of the file at that URL, without saving it permanently.)

The above .vimrc is a slightly simpler version of the one I use, commented so you can see what each part
does. It is based on a .vimrc file that was distributed as part of CS107 back when they used vim.

3

https://explainshell.com/explain?cmd=curl+-Lo+vim_nav.txt+https%3A%2F%2Fcs45.stanford.edu%2Fres%2Flec5%2Fvim_nav.txt

3 Visual Studio Code
Visual Studio Code is our IDE of choice, as it stands right now!

3.1 What’s an IDE?
An IDE, or Integrated Developer Environment, is an application for software development and software code
editing that bundles together lots of functionality for developer productivity into one place.

In particular, this usually means bundling code editing tools together with syntax highlighting and smart
autocomplete, as well as error checking, build tools, testing tools, the ability to run code, and some other
tools that scan and index your code automatically to help you understand and navigate it quickly, all in one
tool.

3.2 Why VSCode?
We like VSCode for a couple reasons; besides the fact that it is totally free, it also has plug-and-play language
support (you can make it richly support new languages by just installing a plugin to it)– and there are a lot
of available language plugins that are very good for VSCode.

Another key reason is that VSCode offers strong support for remote editing, which means that you can access
and edit resources on a server, without needing a GUI shell to be installed on the server at all.

3.3 VSCode Demo
We did a demo in class, demonstrating some of the features of an IDE, the ability to install plugins for
language support, and showing off remote editing.

4

	Text Editing: An Overview
	Rich Text
	Plain Text Editors
	Learning a new editor
	Why vim? Or a TUI editor at all?

	Vim
	A Quick History
	A Modal Editor
	Learning to Navigate vim
	Windows & Buffers
	Configuring vim
	Demoing .vimrc

	Visual Studio Code
	What's an IDE?
	Why VSCode?
	VSCode Demo

