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Learning Goals

In this (and next) lecture, we will see:

• How to safely store your files (code or text)

• How to collaborate on files with others over the internet

• How to avoid losing your data!
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File Versions

• Many of the files you work with will be text:

• Source Code

• Documentation

• Markup Files

• As you change these files over time, you'll eventually want some way to keep
track of different “versions” of the file.

• What we need is a “version control system”.
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Version Control Systems

• A version control system (VCS) is a piece of software which manages
different versions of your files and folders for you.

• A good VCS will let you look at old versions of files and restore files (or
information) which youmight have accidentally deleted.

• You've seen these before!
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Version Control Systems

A good version control system:

• Will store many versions of your files

• Will let you “revert” a file (or a part of a file) to an older version

• Will track the order of different versions

• Will ensure each “version” is neither too big nor too small

A great version control system:

• Will let you collaborate on files with other people

• Will help you combine “branched” versions of the files produced by different
people working independently
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Google Docs

Google Docs automatically keeps track of file history in a basic VCS.

Pros:

• Great for rich text

• Allows real-time collaboration

• Saved on the cloud automatically

Cons:

• Bad for plain text (especially code)

• Requires an internet connection

• Only supports a single “current” version of a single file
12



Copying Files

You canmake a bunch of copies of files or folders with cp as a simple form of
version control. You can compare versions with diff.

Pros:

• Works on either rich or plain text (or anything else)

• It's simple andmakes it easy to move data between versions

Cons:

• It's messy and a lot ofmanual work

• It's hard to tell what the relationship between different versions is

• It takes a lot of hard drive space
13



Zip Files

Instead of just cping folders, we could bundle them up into a Zip file (a single file
which can be “unzipped” into a folder).

Pros:

• Tracks versions for an entire folder at once

• Easy to share a version with someone else (email)

Cons:

• It's still a lot ofmanual work

• It's hard to tell what the relationship between different versions is

• It's hard to extract a single file from an old version
14



Zip Files++

• What if we had a tool which did all this zip file stuff automatically?

• We could tell it to take a “snapshot” of a directory, and it would save all the
changes in it.

• We could ask it to recover an old version of a specific file, or to reset everything
to an old version to “undo” our work.

• The tool could track the relationships between different versions, so we can
have multiple “current” versions at the same time.

• If we want to combine different versions, the tool can automatically do it for us
(instead of us copying and pasting the parts together).
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Git

git is a version control systemwhich tracks “commits” (snapshots) of files in a
repository.

• Git stores old versions of files in a hidden folder (.git), and automatically
manages them.

• We can tell Git to keep track of certain files, and tell it when to take a snapshot.

• We can ask Git to go back to an old snapshot (even for a single file).

• We can ask Git to keep track of who's working on what, so multiple people can
work on different things without conflicting.

• If we want to combine multiple people's work, we can ask Git to automatically
merge them together. If it can't for some reason, it'll ask us to manually merge
them.
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Basic Workflow

The simplest way to use git is the “linear” workflow, which is the sameway you'd use
Google Docs:

1. git init to enable Git in a certain directory

2. git add any files you want Git to “track”

3. git commit the currently “staged” changes to save a snapshot

4. make changes to your files

5. git add the changed files to “stage” them again

6. Repeat from 3

You can use git log to see your commit history, and use git status to see the
current state of staged/unstaged/untracked changes.
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Basic Workflow

Demo

Let's practice how to:

• Create a new Git repository

• Commit a new file

• Commit changes to files

• Revert commits

• Look at an old version of a file

• Compare two versions of files

• See your commit history
20
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Branching Workflow

We can also split our “repo” into multiple branches, which are like alternate
versions of a folder. This means different people can work on different things
without interfering with one another.

1. Make sure your repository is “clean” (i.e., you have no uncommitted changes).

2. git checkout -b <branch> to create a new branch andmove to it; at this
point, the new branch will be identical to the old one.

3. Make changes, git add, git commit as usual

4. git checkout to switch between branches
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Branching Workflow

Combining Branches

Now that we have multiple branches, we probably want to join them back together
at some point.

There are several ways to do this:

• git merge two branches into one

• git merge --fast-forward a long branch onto a shorter version of itself

• git rebase one branch onto another branch

• git cherry-pick a specific commit from one branch to another
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Branching Workflow

Fast Forwarding

The simplest case of merging is called fast-forwarding.
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Branching Workflow

Merging

Merging (in general) creates a merge commit to join the two branches.
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Branching Workflow

Rebasing

Rebasingmoves the “base” of a branch to be a different commit.

Rebasing edits
Git's history to make fast-forwarding possible.
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Branching Workflow

Cherry-Picking

Cherry-picking copies a single commit from one branch to another branch.

Cherry-picking and rebasing is a good way to move a single commit from one
branch to another.
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Branching Workflow

When to merge/rebase/cherry-pick?

• fast-forwardwhen possible (git merge --ff-only).

• rebase and then fast-forward if possible, i.e., if you're the only one working on
the branch; never rebase a branch other people are using (git rebase and git
merge --ff-only).

• merge if neither of the above are possible (git merge).

• cherry-pick if you want to copy a specific commit to another branch (git
cherry-pick)1.

1This is pretty rare, I’ve only used it a handful of times.
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Branching Workflow

Branching Demo

Let's practice how to:

• Split our repository into two branches

• Switch between branches

• Make commits on either branch

• Merge two branches together
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To Be Continued…

We'll pick back up with merge conflict resolution and collaboration in Lecture 10.

Some commands which (probably) came up during class:

git checkout: essentially means “move to a different commit”; doesn't change
your git history

git reset: “resets” the entire repository to the way it was in an old commit (and
changes git history to match)

git revert: “undoes” a specific old commit by creating a new commit that does
the opposite

Note that, even though Git commits are technically versions, Git's commands often
operate on the changes between versions.
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