
CS520: KNOWLEDGE GRAPHS
Data Models, Knowledge Acquisition, Inference, Applications

Learn about the basic concepts,
latest research & applications

Lectures and Invited Guests

Spring 2021, Tu/Thu 4:30-5:50, cs520.Stanford.edu

What are some Knowledge
Graph Data Models?

Outline

• Two Popular Knowledge Graph Data Models
• Resource Description Framework (RDF) (Query language: SPARQL)

• Property Graphs (Query language: Cypher)

• Comparison of RDF and Property Graphs

• Comparison of Graph Models with Relational Model

• Limitations of Graph Data Models

• Summary

Resource Description Framework

• Designed to represent information on the web

• Standardized by World Wide Web (W3C) Consortium

RDF Data Model

• Triple is the basic unit of representation
• Consists of subject, predicate, and object

art knows bob

RDF Data Model

• The nodes can be of three types
• Internationalized Resource Identifiers (IRI)

• Uniquely identifies resources on the web

• Literals
• A value of certain type (integer, string, etc.)

• Blank nodes
• A node with no identifier (anonymous)

Internationalized Resource Identifiers

URL: http://www.wikipedia.org

URI: www.wikipedia.org

IRI: https://hi.wikipedia.org/हिन्दी_विकिपीडिया

Internationalized Resource Identifiers

• Generalization of Uniform Resource Identifiers
• URIs sequence of characters chosen from a limited subset of the repertoire of

US-ASCII
• Uniform Resource Locator (URL) is a URI that also specifies the method of access

• IRIs use characters chosen from Universal Character Set (UCS)

Examples:

URL: http://www.wikipedia.org

URI: www.wikipedia.org

IRI: https://hi.wikipedia.org/हिन्दी_विकिपीडिया

Internationalized Resource Identifiers

<http://example.org/art> <http://xmlns.com/foaf/0.1/knows> <http://example.org/bob>

art knows bob

Internationalized Resource Identifiers

<http://example.org/art> <http://xmlns.com/foaf/0.1/knows> <http://example.org/bob>

We can define prefixes

@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix ex: <http://example.org/>

ex:art foaf:knows ex:bob

art knows bob

Literal

• A value of certain type

Examples:

ex:bea foaf:age 23

"1"^^xsd:integer

"01"^^xsd:integer

Blank Nodes

• Used for representing structured information

exstaff:85740 exterms:address "1501 Grant Avenue, Bedford, Massachusetts 01730" .

exstaff:85740 exterms:address _:art_address

_:art_address exterms:street “1501 Grant Avenue”

_:art_address exterms:city “Bedford”

_:art_address exterms:state “Massachusetts”

_:art_address exterms:zip “01730”

RDF Vocabulary

• A set of IRIs to be used in describing the data

• RDF graphs are static
• By providing suitable vocabulary extension dynamics of data may be captured

RDF Dataset

• A collection of RDF graphs with
• Exactly one default graph

• One or more named graphs
• Name can be a blank node or an IRI

Query Language: SPARQL

• Simple Protocol and Query Language (pronounced “sparkl”)

• Queries can go across multiple sources
• Show me on a map the birthplace of people who died in Winterthour

• Full-featured query language
• Required/optional parameters

• Filtering the results

• Results can be graphs

Query Language: SPARQL

• Example: Who are the persons that art knows?

SELECT ?person

WHERE

<http://example.org/art> <http://xmlns.com/foaf/0.1/knows> ?person

?person1

<http://example.org/bob>

<http://example.org/bea>

Graph Pattern

Query Language: SPARQL

• Example: Who are the persons known by the persons that art knows?

SELECT ?person ?person1

WHERE

<http://example.org/art> <http://xmlns.com/foaf/0.1/knows> ?person

?person <http://xmlns.com/foaf/0.1/knows> ?person1

?person ?person1

<http://example.org/bob> <http://example.org/cal>

<http://example.org/bob> <http://example.org/cam>

<http://example.org/bea> <http://example.org/coe>

<http://example.org/bea> <http://example.org/cory>

Query Language: SPARQL

PREFIX ex: <http://example.org/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person ?person1

WHERE

ex:art foaf:knows ?person

?person foaf:knows ?person1

?person ?person1

<http://example.org/bob> <http://example.org/cal>

<http://example.org/bob> <http://example.org/cam>

<http://example.org/bea> <http://example.org/coe>

<http://example.org/bea> <http://example.org/cory>

Basic graph pattern match

Query Language: SPARQL

@prefix dc:
<http://purl.org/dc/elements/1.1/> .

@prefix : <http://example.org/book/> .

@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .

:book1 ns:price 42 .

:book2 dc:title "The Semantic Web" .

:book2 ns:price 23 .

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?title

WHERE { ?x dc:title ?title

FILTER regex(?title, "^SPARQL")

}

title

“SPARQL Tutorial”

Query Language: SPARQL

@prefix dc:
<http://purl.org/dc/elements/1.1/> .

@prefix : <http://example.org/book/> .

@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .

:book1 ns:price 42 .

:book2 dc:title "The Semantic Web" .

:book2 ns:price 23 .

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price

WHERE { ?x ns:price ?price .

FILTER (?price < 30.5)

?x dc:title ?title . }

?title ?price

“The Semantic Web” 23

Query Language: SPARQL

• Instead of SELECT, we can use CONSTRUCT
• Returns a graph

• Queries can contain more than one graph pattern

• Eliminate duplicates, total number of results

Outline

• Two Popular Knowledge Graph Data Models
• Resource Description Framework (RDF) (Query language: SPARQL)

• Property Graphs (Query language: Cypher)

• Comparison of RDF and Property Graphs

• Comparison of Graph Models with Relational Model

• Limitations of Graph Data Models

• Summary

Property Graph Data Model

• Used by many graph databases

• General graph data
• Do not require a predefined schema

• Optimize graph traversals

Property Graph Data Model

• Nodes, relationships and properties

• Each node and a relationship has a label and set of properties

• Properties are key value pairs
• Keys are strings, values can be any data types

• Each relationship has a direction

Property Graph Data Model

• Nodes, relationships and properties

• Each node and a relationship has a label and set of properties

• Properties are key value pairs
• Keys are strings, values can be any data types

• Each relationship has a direction

Property Graph Data Model

• Nodes, relationships and properties

• Each node and a relationship has a label and set of properties

• Properties are key value pairs
• Keys are strings, values can be any data types

• Each relationship has a direction

Query Language: Cypher

• Query language for querying graph data

• Being considered for adoption as an ISO Standard

• Supports CRUD operations
• Create, read, update, delete

Query Language: Cypher

• Which people does art know?

MATCH (p1:Person {name: art}) -[:knows]-> (p2: Person)

RETURN p2

Query Language: Cypher

• Which people does art know since 2010?

MATCH (p1:Person {name: art}) -[:knows {since: 2010}]-> (p2: Person)

RETURN p1, p2

Query Language: Cypher

• Which people does art know since 2010?

MATCH (p1:Person) -[:knows {since: Y}]-> (p2: Person)

WHERE Y <= 2010

RETURN p1, p2

• WHERE clause can be used to specify a variety of filtering constraints

Query Language: Cypher

• Constructs for
• Counting

• Grouping

• Aggregating

• Min/Max

Outline

• Two Popular Knowledge Graph Data Models
• Resource Description Framework (RDF) (Query language: SPARQL)

• Property Graphs (Query language: Cypher)

• Comparison of RDF and Property Graphs

• Comparison of Graph Models with Relational Model

• Limitations of Graph Data Models

• Summary

RDF and Property Graphs

• RDF supports several additional layers
• RDF Schema, Web Ontology, etc.

• Basic differences
• Property graph model supports edge properties

• Property graph model does not require IRIs

• Property graph model does not support blank nodes

Reification in RDF

• Suppose we wish to specify the provenance of a triple

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal

• We wish to state who took the above measurement
• In a property graph we would do it using an edge property

Reification in RDF

• Reification Vocabulary
• rdf:type, rdf:Statement

• rdf:subject

• rdf:predicate

• rdf:object

Reification in RDF

• Reification Vocabulary
• rdf:type rdf:Statement

• rdf:subject

• rdf:predicate

• rdf:object

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal

exproducts:triple12345 rdf:type rdf:Statement .

exproducts:triple12345 rdf:subject exproducts:item10245 .

exproducts:triple12345 rdf:predicate exterms:weight .

exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .

exproducts:triple12345 dc:creator exstaff:85740 .

Translating Property Graphs into RDF

• Property Graph
• Node properties

• Edges

• Edge properties

• RDF
• Triples

• Triples

• Reified edges + Triples

Translating Property Graphs into RDF

• Property Graph
• Subject and object become nodes

with predicates as the edges
between those nodes

• RDF
• Triples

Translating Property Graphs into RDF

• Property Graph
• Subject and object become nodes

with predicates as the edges
between those nodes

• Create new nodes only for those
RDF nodes that are IRIs or blank
nodes

• Literals become node properties

• RDF
• Triples

• Triples

RDF and Property Graphs

• RDF supports several additional layers
• RDF Schema, Web Ontology, etc.

• Basic differences
• Property graph model supports edge properties

• Property graph model does not require IRIs

• Property graph model does not support blank nodes

• Similarities
• Data in one can be inter-converted into the other

Graph Model and Relational Model

• Graphs are easier to understand
• Relational schemas can be visualized

• Graph queries are more compact and faster
• Translator from graph queries to relational queries can be written

Example

Example

Employee Department
works_in

id=d01
name=IT
manager=…

id=e01
name=alice
ssn=…

Example

SELECT name FROM Employee
LEFT JOIN Employee_Department

ON Employee.Id = Employee_Department.EmployeeId
LEFT JOIN Department

ON Department.Id = Employee_Department.DepartmentId
WHERE Department.name = "IT"

List the employees in the IT Department

Example

SELECT name FROM Employee
LEFT JOIN Employee_Department

ON Employee.Id = Employee_Department.EmployeeId
LEFT JOIN Department

ON Department.Id = Employee_Department.DepartmentId
WHERE Department.name = "IT"

List the employees in the IT Department

MATCH (p:Employee) -[:works_in]-> (d:Department)
WHERE d.id = "IT"
RETURN p

Mapping Graph Model to Relational Model

• Provide two relational tables
• A table that represents node properties and relationships as riples

• A table that represents edge properties as four tuples

Mapping Graph Model to Relational Model

• Provide a translator from graph queries to relational queries
• Incorporate optimizations in the translator

• Can optimize queries across the graph data and legacy data in relational
systems

Graph
Data

Legacy
Relational

Data

Translator/Optimizer

Graph Queries

Graph Model and Relational Model

• Graphs are easier to understand
• Relational schemas can be visualized

• Graph queries are more compact and faster
• Translator from graph queries to relational queries can be written

Limitations of the Graph Model

• Triples are not always sufficient
• For example, the ternary relationships such as between

• Time series data is naturally modeled in relations
• Evolving population of a country over a period of time

Summary

• RDF/SPARQL and Property Graph / Cypher are common graph data
models in use today

• RDF addresses the need to model information on the web, while
Property Graphs are used as a model in general graph databases

• Translations exist between RDF and property graph models

• Translations also exist from graph models to relations

• Unique features of graph models
• More compact queries
• Optimized for traversals
• Graphical visualization

Prof. Tamer Özsu Dr. Petra Selmer

Querying Property Graphs
with [open]CypherDistributed SPARQL Execution

