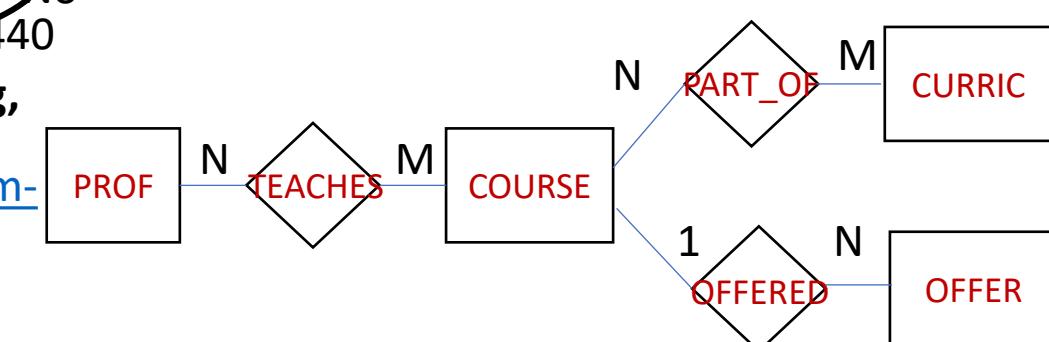
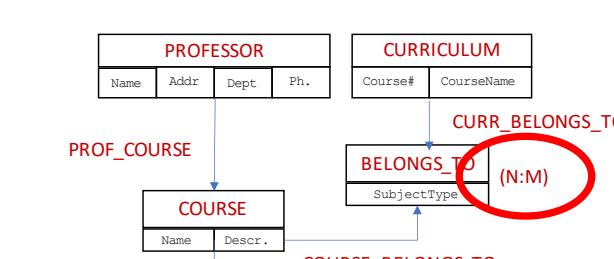
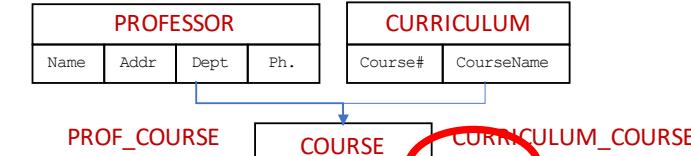


Knowledge Graphs – And why we need them

CS520 Guest Lecture
Chaitan Baru, UC San Diego /
National Science Foundation

Let's begin with Graphical Representations of data...for data management and processing

- Early 1970's: The Network Model, CODASYL (COnference on DAta SYstems Languages DataBase Task Group)




- *Bachman Diagrams*
- Introduced the ideas of a Schema, Subschema, Data Definition Language, Data Manipulation Language
- “Record types” and one-many associations between Record Types
- Mapping of structure to magnetic disk (2D to 1D)
- Had to traverse data structures using operations like Next, Previous, FirstChild, Parent, etc.

Focus on physical data structures and operations on access data on disk

- Mid-1970's Entity-Relationship Diagrams

- *The Entity-Relationship Model* – Peter P. Chen, ACM's Transaction on Database Systems, Vol. 1, No. 1, March 1976, <https://dl.acm.org/doi/10.1145/320440>

Focus on conceptual design

Object-oriented modeling

- Mid-1990s: Advent of Object-oriented design methodologies
 - *Unified Modeling Language User Guide*, Addison-Wesley 2005, ISBN 0321267974
- Rich variety of relationships, including inheritance, part-of, etc.

this class is associated with ——— this class

this class is dependent upon - - - → this class

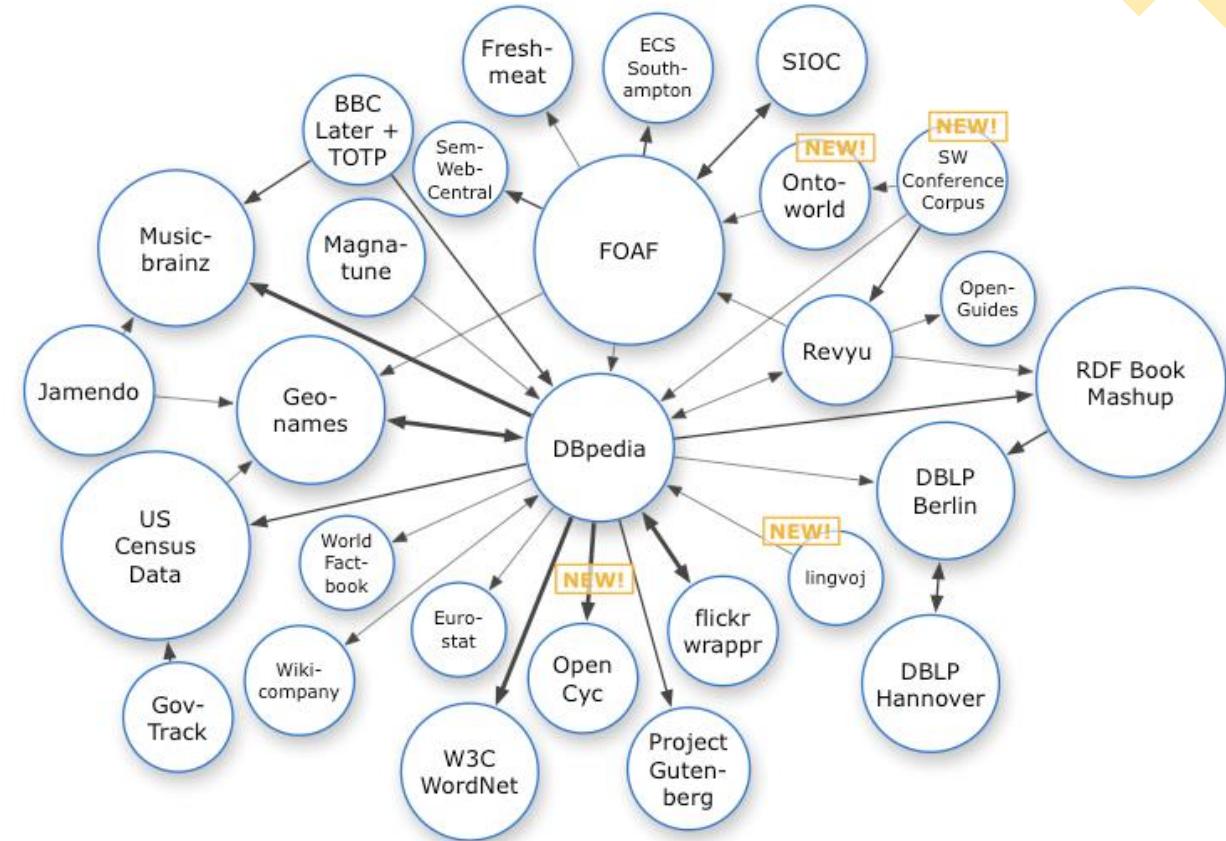
this class inherits from —→ this class

this class has —○— this interface

this class is a realisation of - - - ▷ this class

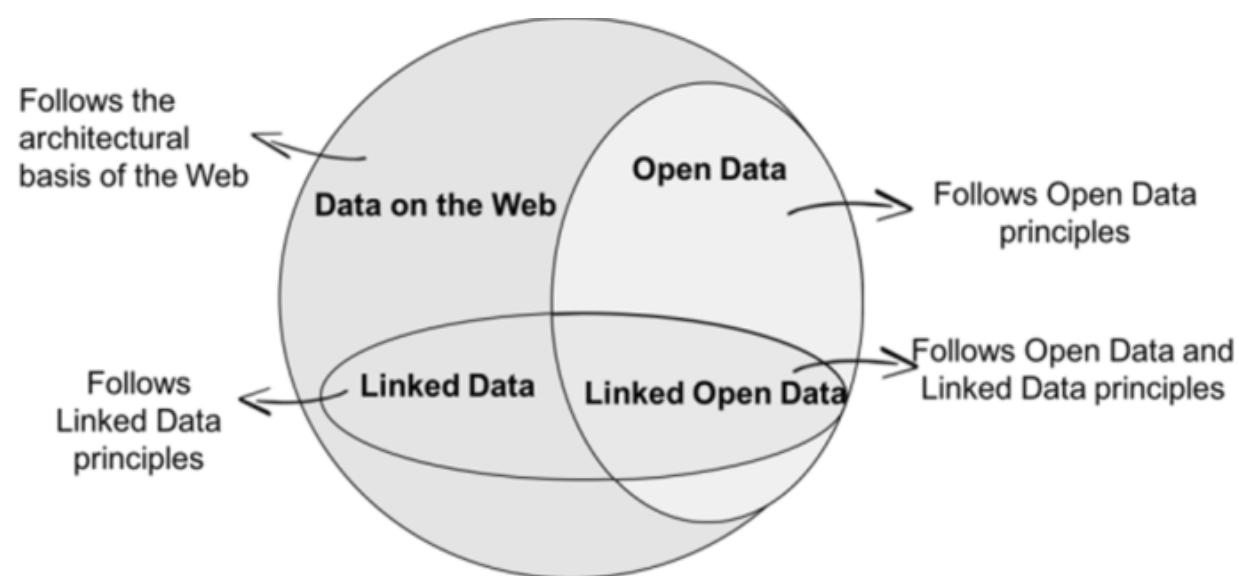
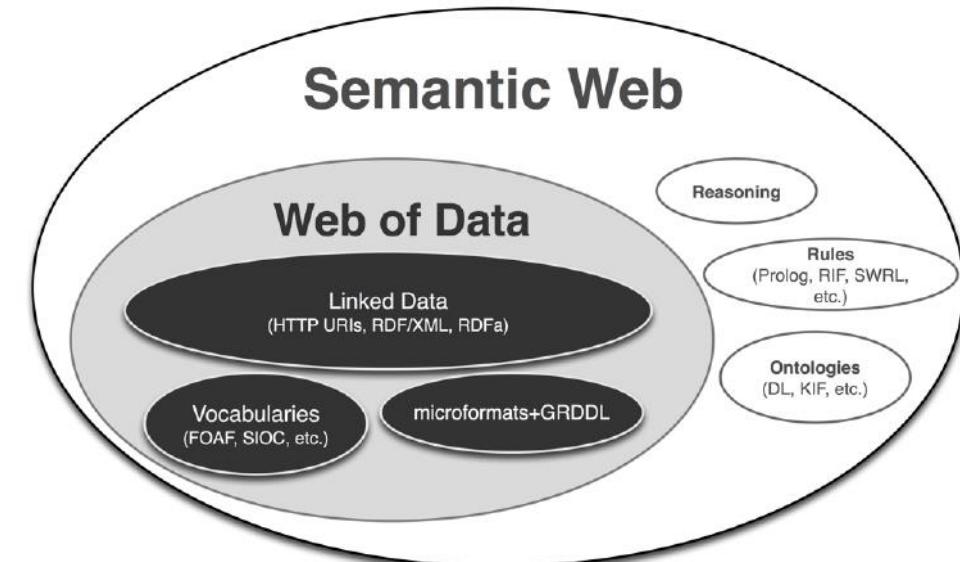
you can navigate from this class to —→ this class

these classes compose without belonging to —◇— this class


these classes compose and are contained by —◆— this class

this object sends a synchronous message to —→ this object

this object sends an asynchronous message to —▶— this object



Fast Forward 30 years...to Now!

- Huge amounts of open, unstructured data on the Web (and structured data in the “Deep Web”)
- Heterogeneous data – Real-world entities associated with a wide variety of information
 - You – as an individual
 - A disease and all of its relationships
 - A geographic location, e.g., your home
 - Ecological information for a region
 - ...
- The need to search all of this data and “integrate” data (e.g., Google/Bing search)
- Knowledge Representation and Querying Systems
 - OWL, SPARQL
- Computational power
 - Big data – BigQuery, BigTable
 - Graph databases

Semantic Web, Linked Open Data

- Semantic Web: Web data + Ontologies + Reasoning using the Web Ontology Language (OWL) (web of data, 2018)
- Linked Open Data: Web-based structured data, interlinked with other data so it becomes more useful through semantic queries, using RDF etc.

Emerging services: E.g., data.world for structured data

Can your data catalog do *this*?

All your knowledge

data.world gives you complete context, so you actually *understand* the data, whether it's in the cloud or on-prem. This includes metadata, dashboards, analysis, code, docs, project management, and social collaboration features.

Agile innovation

data.world is the only [enterprise data catalog](#) with a continuous release cycle. That means our platform is always getting better, and your data tools are never out of date. To access the latest features and capabilities, just refresh your browser.

Real-time integration

Deploy faster and extend your capabilities farther with data.world's growing array of one-click, pre-built [integrations](#), connectors, and APIs.

Born in the cloud

We've been cloud-native from day one. Our multi-tenant offerings are highly available, scale bigger, perform better, and evolve faster. And as a SaaS company, we provide open and [transparent pricing](#).

Powered by a knowledge graph

data.world automatically builds a connected web of data and insights so you can explore the relationships within. Get recommendations on related assets to enrich your analysis. The more you use data.world's patented [knowledge graph](#) technology, the smarter you and your data get.

One-of-a-kind expertise

data.world built the world's largest [open data community](#). Imagine what we've learned from hundreds of thousands of users, datasets, and interactions. This deep and unrivaled knowledge informs everything we do for enterprises, too.

The screenshot shows the data.world website with a blue header. The main content area has a dark blue background with the text "SOLUTION" and "Knowledge Graph" in large white letters. Below that, a sub-headline reads "How do you make data more useful?". To the right, there is a white box with the heading "RESEARCH" and the sub-headline "How Linked Data Creates Data Cultures". A green button at the bottom of this box says "GET THE REPORT". The top navigation bar includes links for "Product", "Pricing", "Roles", "Resources", and "Company".

Knowledge

a. Wikipedia (and Webster) definitions of “knowledge”

- A familiarity, awareness, or understanding of someone or something, such as facts, skills, or objects. ... knowledge can be acquired in many different ways and from many sources ... perception, reason, memory, testimony, scientific inquiry, education, and practice.

b. Scientific Knowledge

- To be termed scientific, a method of inquiry must be based on gathering observable and measurable evidence subject to specific principles of reasoning and experimentation. The scientific method consists of the collection of data through observation and experimentation, and the formulation and testing of hypotheses.

c. (Scientific) Knowledge must be “usefully available”

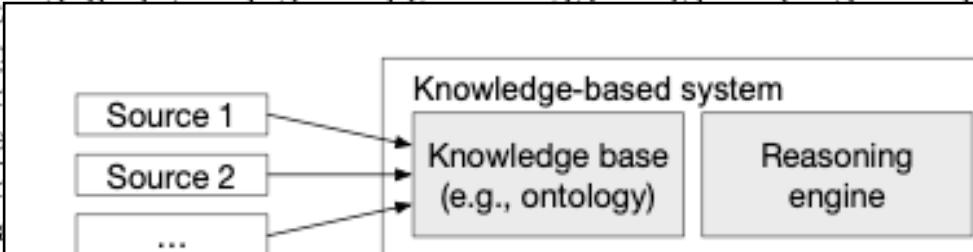
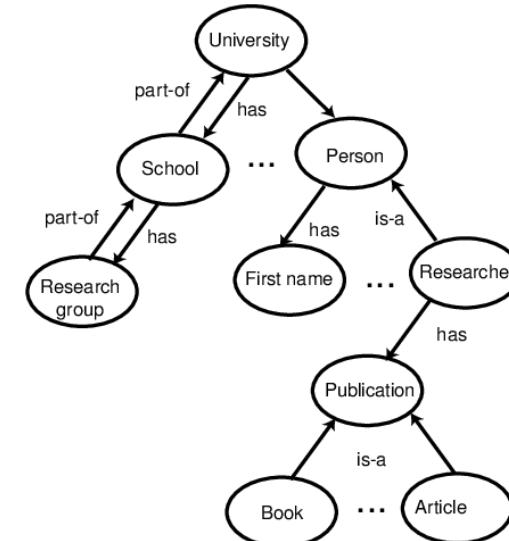
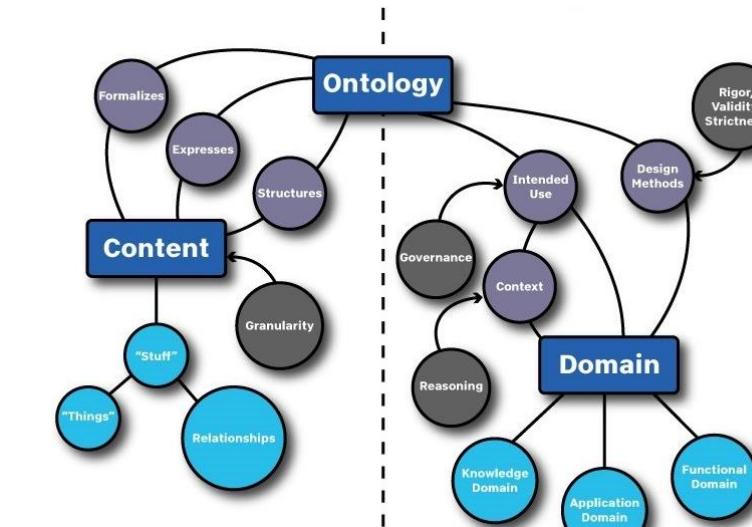
- The system should apparently be dynamic and self-organizing (unlike a mere book on its own).
- The knowledge must constitute some sort of representation of "the outside world", or ways of dealing with it (directly or indirectly).
- Some way must exist for the system to access this information quickly enough for it to be useful.

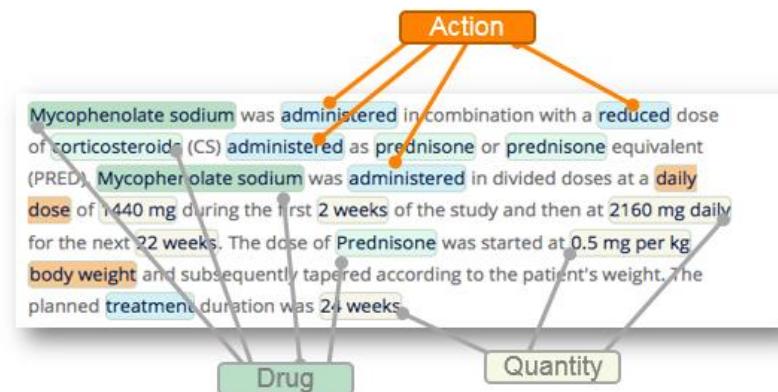
What is the “knowledge” in Knowledge Graphs?

- Focus (for now...) is not on knowledge in the epistemological sense—i.e., what do we *know*? And, representing what we know.
- Instead, on a data-driven approach. Represent the data I have—about “entities” (in the real world) and their relationship to other entities
- This graph of entities and their relationships is the start of the knowledge graph

Towards a Definition of Knowledge Graphs

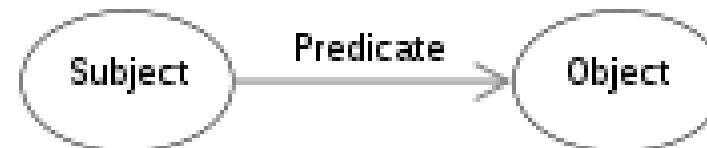
- Lisa Ehrlinger and Wolfram, Poster, Semantics 2016, September 2016, Leipzig, <https://2016.semantics.cc/posters-and-demos-madness>.




Definition	Source
“A knowledge graph (i) mainly describes real world entities and their interrelations, organized in a graph, (ii) defines possible classes and relations of entities in a schema, (iii) allows for potential reasoning and inference.”	Paulheim [16]
	[12]
<p><i>A knowledge graph acquires and integrates information into an ontology and applies a reasoner to derive new knowledge.</i></p>	[3]
<p>subject $s \in U \cup B$, a predicate $p \in U$, and an object $U \cup B \cup L$. An RDF term is either a URI $u \in U$, a blank node $b \in B$, or a literal $l \in L$.”</p> <p>[...] systems exist, [...], which use a variety of techniques to extract new knowledge, in the form of facts, from the web. These facts are interrelated, and hence, recently this extracted knowledge has been referred to as a knowledge graph.”</p>	Pujara et al. [17]


Table 1: Selected definitions of knowledge graph

Ontologies...

From natural language to a formal logic system
--The Resource Description Framework (RDF) triple model: A set of three entities codifying a statement in the form subject–predicate–object expressions, e.g., "Bob is 35", or "Bob knows John")


- Where do ontologies come from?
Designing versus *deriving* ontologies

Where do the entities come from? Structured and Unstructured data...

- Structured databases
 - Corporate data, many scientific databases
- Vast majority of data on the web and in science domains are unstructured
 - Images, text, video, signals (waveforms)
- Representation using the RDF model

	Structured Data	Unstructured Data
Characteristics	<ul style="list-style-type: none">• Pre-defined data models• Usually text only• Easy to search	<ul style="list-style-type: none">• No pre-defined data model• May be text, images, sound, video or other formats• Difficult to search
Resides in	<ul style="list-style-type: none">• Relational databases• Data warehouses	<ul style="list-style-type: none">• Applications• NoSQL databases• Data warehouses• Data lakes
Generated by	Humans or machines	Humans or machines
Typical applications	<ul style="list-style-type: none">• Airline reservation systems• Inventory control• CRM systems• ERP systems	<ul style="list-style-type: none">• Word processing• Presentation software• Email clients• Tools for viewing or editing media
Examples	<ul style="list-style-type: none">• Dates• Phone numbers• Social security numbers• Credit card numbers• Customer names• Addresses• Product names and numbers• Transaction information	<ul style="list-style-type: none">• Text files• Reports• Email messages• Audio files• Video files• Images• Surveillance imagery

RDF schema: Schema.org

Welcome to Schema.org

Schema.org is a collaborative, community activity with a mission to [create, maintain, and promote schemas for structured data on the Internet, on web pages, in email messages, and beyond.](#)

Schema.org vocabulary can be used with many different encodings, including RDFa, Microdata and JSON-LD. These vocabularies cover entities, relationships between entities and actions, and can easily be extended through a well-documented extension mode. [Over 10 million sites use Schema.org to markup their web pages and email messages](#)
[Many applications from Google, Microsoft, Pinterest, Yandex and others already use these vocabularies to power rich, extensible experiences.](#)

Founded by Google, Microsoft, Yahoo and Yandex, Schema.org vocabularies are developed by an open [community process](#), using the public-schemaorg@w3.org mailing list and through [GitHub](#).

A shared vocabulary makes it easier for webmasters and developers to decide on a schema and get the maximum benefit for their efforts. It is in this spirit that the founders, together with the larger community have come together - to provide a shared collection of schemas.

We invite you to [get started!](#)

View our blog at [blog.schema.org](#) or see [release history](#) for version 12.0.

Types:

[Close hierarchy](#) / [Open hierarchy](#)

▼ Thing -

- ▶ Action +
- ▶ CreativeWork +
- ▶ Event +
- ▶ Intangible +
- ▶ MedicalEntity +
- ▶ Organization +
- ▶ Person +
- ▶ Place +
- ▶ Product +

DataTypes:

[Close hierarchy](#) / [Open hierarchy](#)

▼ DataType -

- ▶ Boolean +
- Date
- DateTime
- ▶ Number +
- ▶ Text +
- Time

Schema.org

SpecialAnnouncement

A Schema.org Type

This term is proposed for full integration into Schema.org, per

Thing > CreativeWork > SpecialAnnouncement

Reacting to COVID-19

7.0
2020-03-17

Version 7.0. See [planning pages](#).

Vocabulary

schema blog

Official blog for schema.org

MONDAY, MARCH 16, 2020

Schema for Coronavirus special a Testing Facilities and more

The COVID-19 pandemic is causing a large number of changes in schedules and other aspects of everyday life. This includes rescheduling of events but also new availability of medical facilities.

We have today published Schema.org 7.0, which includes a new type for the global response to the Coronavirus outbreak.

It includes a "SpecialAnnouncement" type that provides a way to mark up an announcement, as well as markup to associate the announcement with a location, and to indicate URLs for various kinds of update such as news, guidelines, travel bans, and information about testing facilities.

Many new testing facilities are being rapidly established. Schema.org now has a `CovidTestingFacility` type to represent these medical facilities or temporary adaptations.

We are also making improvements to other areas of Schema.org. For example, an event now has `moved` from having a physical location to being online, depending on whether the event's `eventAttendanceMode` is online, c...

The basic content of `SpecialAnnouncement` is similar to that of an `RSS` or `Atom` feed. For publishers without such feeds, basic feed-links can be shared by posting `SpecialAnnouncement` updates in a page, e.g. using JSON-LD. For sites with Atom/RSS functionality, you can point to the `webFeed` property. This can be a simple URL, or an inline `DataFeed` object, with `encodingFormat` providing media type information either as "application/rss+xml" or "application/atom+xml".

Property	Expected Type	Description
Properties from <code>SpecialAnnouncement</code>		
<code>announcementLocation</code>	<code>CivicStructure</code> or <code>LocalBusiness</code>	Indicates a specific <code>CivicStructure</code> or <code>LocalBusiness</code> associated with a <code>SpecialAnnouncement</code> . For example, a specific testing facility or the location of a quarantine zone. Includes <code>openingHours</code> for a larger geographic region like a quarantine zone. See also <code>spatialCoverage</code> .
<code>category</code>	<code>PhysicalActivityCategory</code> or <code>Text</code> or <code>Thing</code> or <code>URL</code>	A category for the item. Greater signs or slashes can be used to indicate a category hierarchy.
<code>datePosted</code>	<code>Date</code> or <code>DateTime</code>	Publication date of an online listing.
<code>diseasePreventionInfo</code>	<code>URL</code> or <code>WebContent</code>	Information about disease prevention.
<code>diseaseSpreadStatistics</code>	<code>Dataset</code> or <code>Observation</code> or <code>URL</code> or <code>WebContent</code>	Statistical information about the spread of a disease, either as <code>W6oms</code> or <code>Observations</code> in the <code>WebContent</code> URL is provided, the page indicated might also contain <code>location</code> or <code>temporalRange</code> markup.
<code>gettingTestedInfo</code>	<code>URL</code> or <code>WebContent</code>	Information about getting tested (for a <code>MedicalCondition</code>), e.g. in the context of a pandemic.
<code>governmentBenefitsInfo</code>	<code>GovernmentService</code>	<code>governmentBenefitsInfo</code> provides information about government benefits associated with a <code>SpecialAnnouncement</code> .
<code>newsUpdatesAndGuidelines</code>	<code>URL</code> or <code>WebContent</code>	Indicates a page with news updates and guidelines. This could be the main page containing <code>SpecialAnnouncement</code> or a page that links to it, providing appropriate responses to HTTP OPTIONS request.
<code>publicTransportClosuresInfo</code>	<code>URL</code> or <code>WebContent</code>	Information about public transport closures.
<code>quarantineGuidelines</code>	<code>URL</code> or <code>WebContent</code>	Guidelines about quarantine rules, e.g. in the context of a pandemic.
<code>schoolClosuresInfo</code>	<code>URL</code> or <code>WebContent</code>	Information about school closures.
<code>travelBans</code>	<code>URL</code> or <code>WebContent</code>	Information about travel bans, e.g. in the context of a pandemic.
<code>webFeed</code>	<code>DataFeed</code> or <code>URL</code>	The URL for a feed, e.g. associated with a podcast series, blog, or news site. Includes timestamped updates. This is usually RSS or Atom.

SPARQL: Query language for RDF

- A simple query example using the FOAF, Friends Of A Friend, ontology definition.
- Returns *names* and *emails* of every *person* in the dataset
- An example query showing *country capitals* in Africa (using a fictional ontology)

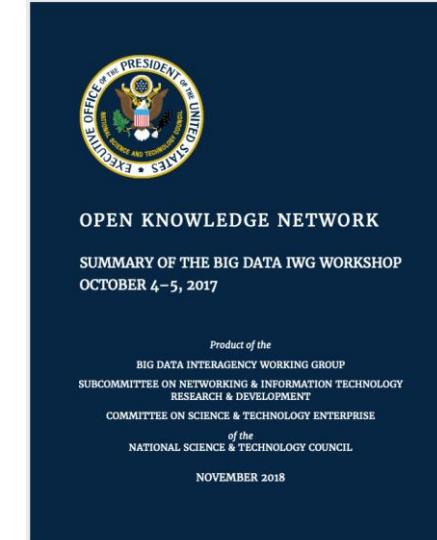
```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
      ?email
WHERE
{
  ?person a foaf:Person .
  ?person foaf:name ?name .
  ?person foaf:mbox ?email .
}
```

```
PREFIX ex: <http://example.com/exampleOntology#>
SELECT ?capital ?country
WHERE {
  ?x ex:cityname ?capital ;
     ex:isCapitalof ?y .
  ?y ex:countryname ?country ;
     ex:isInContinent ex:Africa .
```

Why Knowledge Graphs? The use cases

- Searching the Web – Google, Bing, Maps
- Product information for online shopping
 - Amazon, ...all retailers
- Smart Assistants – Siri, Cortana, Echo, ...
- In science applications:
 - Search, discovery, data exploration
 - Finding connections (“integrating”) among heterogeneous data
 - Enabling analysis
 - Connecting data with (data-driven) models, e.g., ML models

Harvesting entities




- 2007: Freebase—a large collaborative knowledge base
 - Knowledge graph containing data harvested from variety of sources, e.g., Wikipedia, Notable Names Database, Fashion Model Directory and MusicBrainz
 - Entity-Relationship, triple model of representation
- 2010: Google acquires Freebase
- 2012: Wikidata – a collaboratively edited multilingual knowledge graph hosted by the Wikimedia Foundation. A common source of open data used by Wikimedia projects such as Wikipedia and others, under the CC0 public domain license.
- 2015: Google announces Knowledge Graph API, using standard schema.org types, compliant with the JSON-LD (JavaScript Object Notation for Linked Data)
- 2018: Challenges and Innovations in Building a Product Knowledge Graph, Luna Dong, Amazon, Applied Data Science Talk KDD 2018,
<http://www.kdd.org/kdd2018/applied-data-science-invited-talks/view/luna-dong>
- Similarly, Apple, Microsoft Cortana, ...

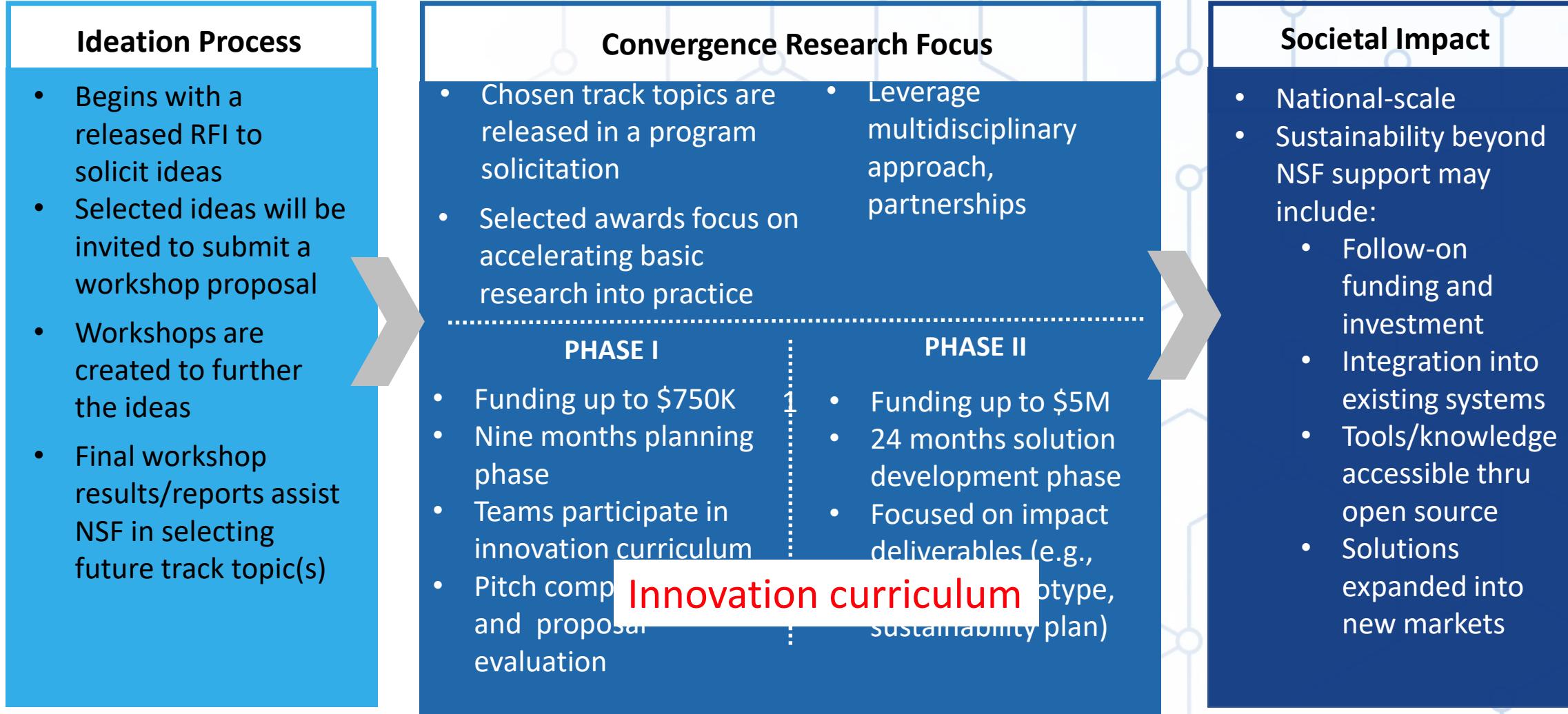
Open Knowledge Network

- Interagency Federal Government Workshop, Oct 2017
- “An open and broad community effort to develop a national-scale data infrastructure—an Open Knowledge Network—would distribute the development expense, be accessible to a broad group of stakeholders, and be domain-agnostic. This infrastructure has the potential to drive innovation across medicine, science, engineering, and finance, and achieve a new round of explosive scientific and economic growth not seen since the adoption of the Internet.”

https://www.nitrd.gov/nitrdgroups/index.php?title=Open_Knowledge_Network

NSF Convergence Accelerator

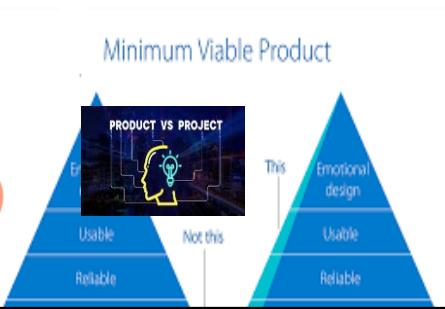
Track A: Open Knowledge Network


- Creating OKN requires collaboration among KG technical experts and science domain experts
- Data may come from highly-curated scientific databases, as well as crowdsourcing
- Need to educate the next generation of scientists in tools to author and query and use KG/KNs.

Knowledge Network Programming System:
An IDE for Knowledge Graphs

Services for enriching data
with geographic context

NSF Convergence Accelerator Model




NSF Convergence Accelerator Curriculum

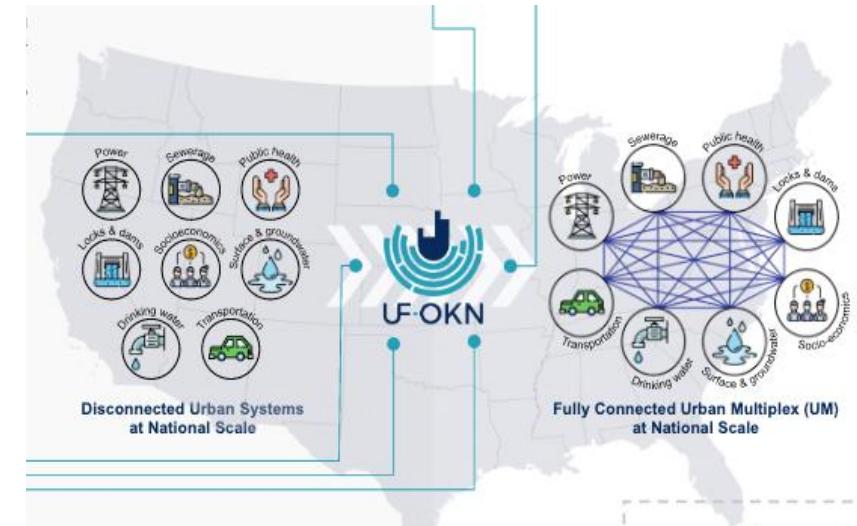
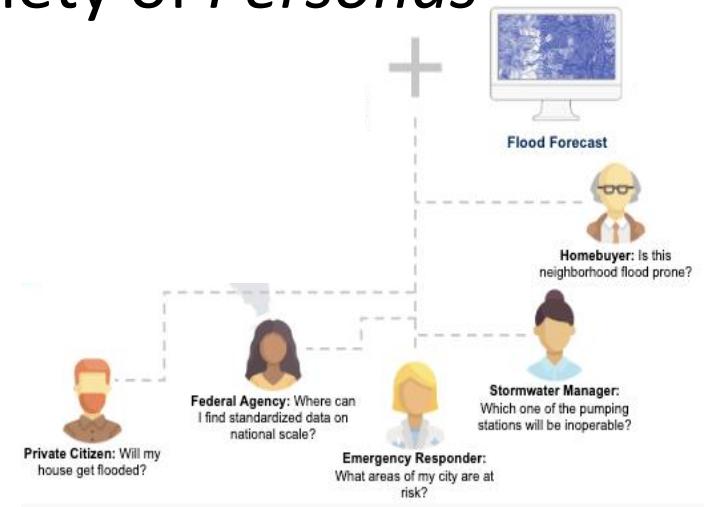
- User Discovery
- Human-centered Design

- Prototyping

- Team Science

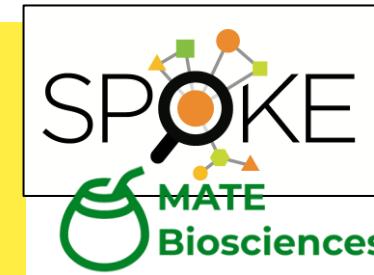
- Coaching/Mentorship
- Financials
- Communication Skills
- Pitching
- Public Expo

Essential for developing Open Knowledge Networks!

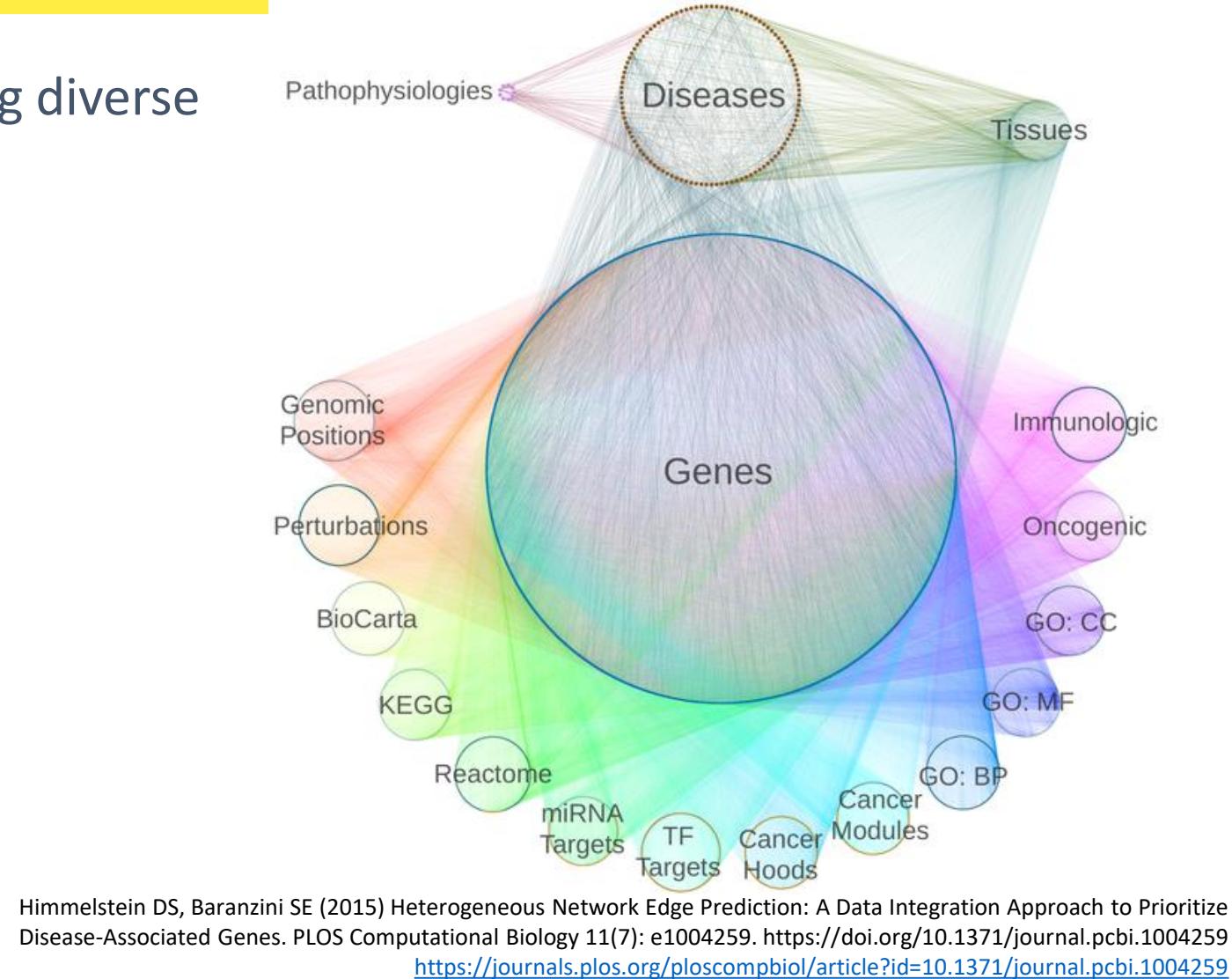
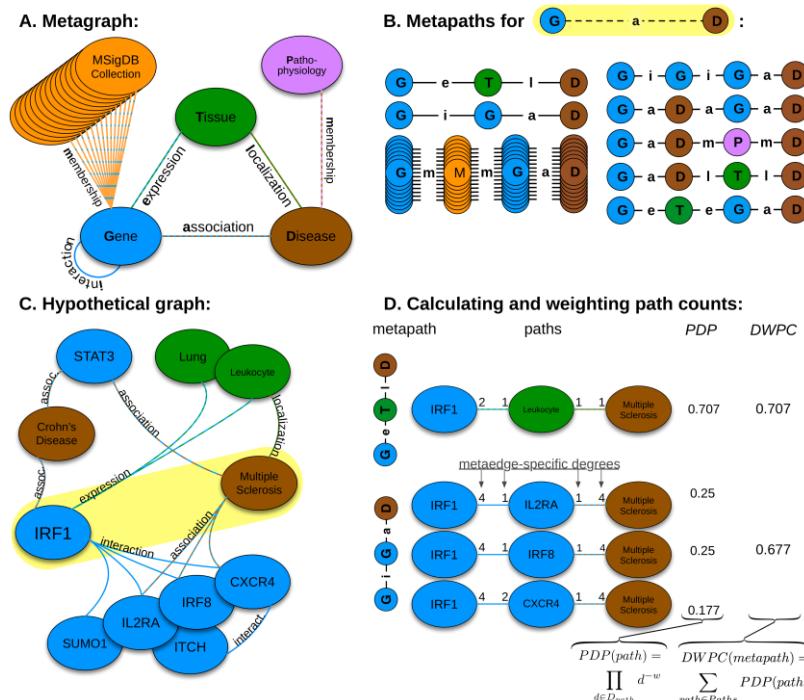



Urban Flooding Open Knowledge Network

UF-OKN, PI: Prof. Lilit Yeghizarian, Univ of Cincinnati



- Link together all information in an urban multiplex
- Connect flood-related data and models
- Serve a variety of *Personas*

- Dealing with uncertainty in flood models
 - 1000's of local/regional flood models across the country

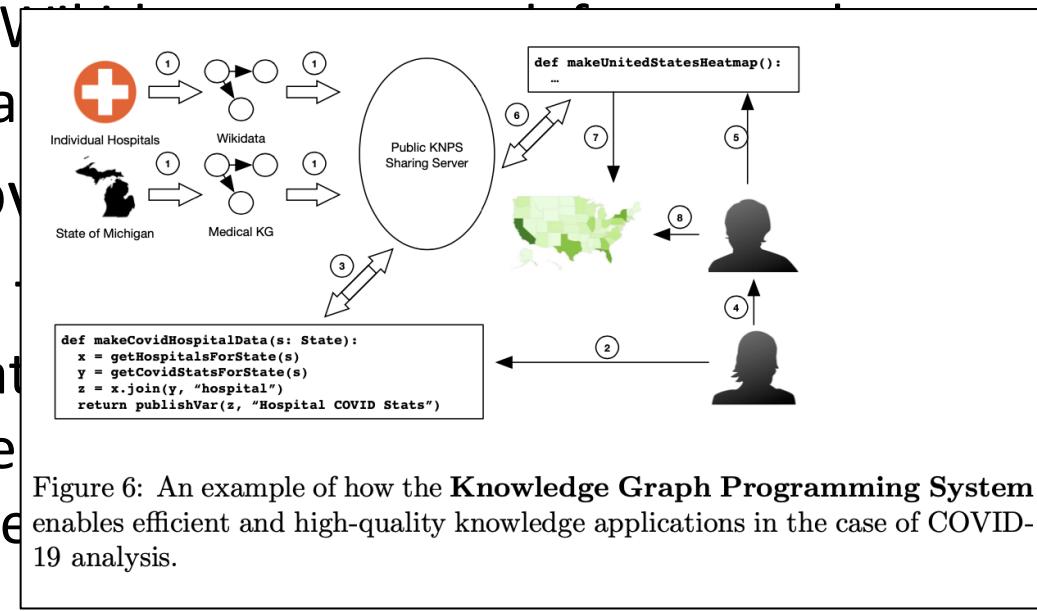
SPOKE: Scalable Precision Medicine Oriented Knowledge Engine, PI: Prof. Sergio Baranzini, UCSF

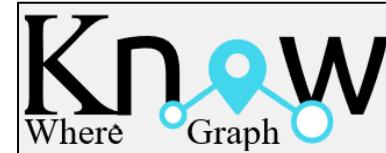
- Heterogeneous network integrating diverse information domains
- Metanodes and metaedges
- Graphical query interfaces

SPOKE references

- Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes, Daniel S. Himmelstein, Sergio E. Baranzini, <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004259>.
- Knowledge Network Embedding of Transcriptomic Data from Space-flown Mice Uncovers Signs and Symptoms Associated with Terrestrial Diseases, Charlotte A. Nelson, Ana Uriarte Acuna,, Amber M. Paul, Ryan T. Scott, Atul J. Butte, Egle Cekanaviciute, Sergio E. Baranzini, and Sylvain V. Costes, Life2021,11, <https://doi.org/10.3390/life11010042>.
- Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings, Charlotte A. Nelson, Atul J. Butte & Sergio E. Baranzini, Nature Communications, (2019) 10:3045, <https://doi.org/10.1038/s41467-019-11069-0>.
- Systematic integration of biomedical knowledge prioritizes drugs for repurposing, Daniel Scott Himmelstein, Antoine Lizée, Christine Hessler, Leo Brueggeman, Sabrina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, Sergio E Baranzini, Life. 2017, <https://doi.org/10.7554/eLife.26726>

SCALES–OKN: Systematic Content Analysis of Litigation EventS OKN, PI: Prof. Luis Amaral, Northwestern


- Extracting knowledge graphs from pdf text
- All court records are currently locked in pdf's behind a paywall (PACER)
- Impossible to perform simple queries, e.g.,
 - How many cases in a jurisdiction have self-representation; and how many of those are successfully litigated for the defendant?
 - In what types of cases are court fees waived? And what is the ethnicity of the defendant?
- Inferring document type from document structure (physical layout of pdfs)
- Developing ontologies for:
 - Legal docs, events – order, notice, report; agreement, brief, motion, notice;
 - Stages of a case—lifecycle; and how cases end

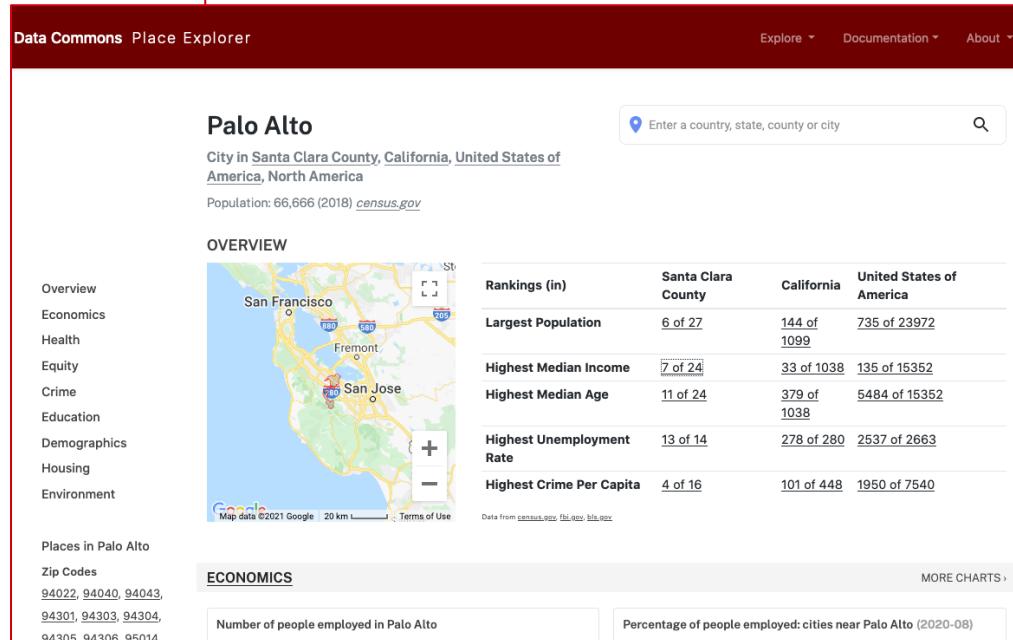
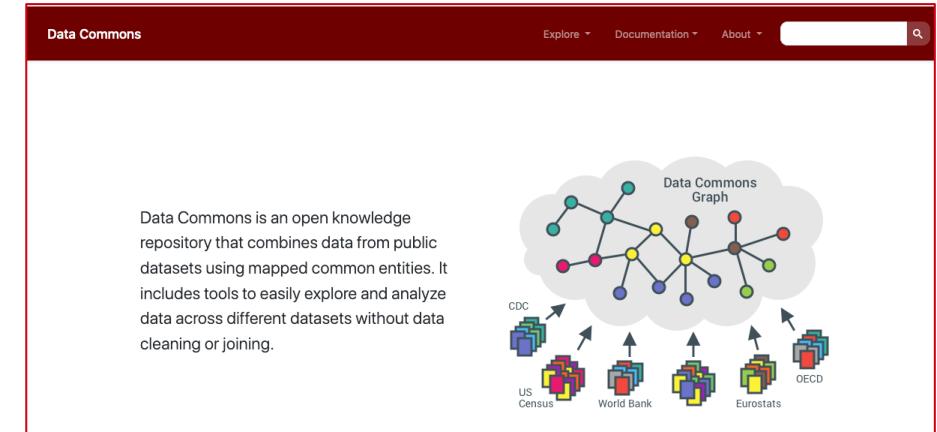

KNPS: Knowledge Graph Programming System, PI: Prof. Michael Cafarella, Michigan / MIT

- A programming language and toolset for:
 - Building KG-driven software;
 - Debugging data quality problems quickly and efficiently
- “Social” Knowledge Networks
 - How KNs like Wikipedia interact
 - Data sharing and reuse
- Supporting provers and reasoners
- Tools using ML
 - Ingest web data
 - Quickly create knowledge graphs
 - Extract knowledge from text



Technical Report on Data Integration and Preparation, El Kindi Rezig, Michael Cafarella, and Vijay Gadepally, MIT, arXiv:2103.01986v1, Mar 2, 2021.

KnowWhereGraph: Geospatial information

- The need for “geoenrichment” of knowledge graphs:
 - Ask Google: What is the distance between India and Pakistan?
- GeoEnrichment
 - Adding spatial “intelligence” to knowledge graphs
 - E.g., knowledge network of experts
 - Where are they located?
 - Which geospatial regions, or types of regions, does their expertise apply to?
- Tools to ingest RDF data into mapping software, e.g. ESRI ArcMap

Other efforts: datacommons.org

- Effort at Google
- Currently, mostly socioeconomic data
- Uses schema.org
- Becoming incorporated into Google search

Some issues...

- Implementation / scaling considerations
 - Underlying representation: Tables vs graphs
 - Graph databases, e.g. Neo4j, Stardog, OrientDB, InfiniteGraph, AllegroGraph, ...
 - Tabular representation, e.g., Relational databases, Apache Spark, BigTable, BigQuery
- Dynamic data
 - Changing data and changing relationships; evolving knowledge graph; versioning
- User views
 - E.g., error and data quality viewed differently by different users / applications
 - *Comprehensive Modular Ontology IDE*, Modular Ontology Modeling, Cogan Shimizu, Karl Hammar, Pascal Hitzler, Semantic Web, <http://www.semantic-web-journal.net/content/modular-ontology-modeling>.
 - “More than one domain expert with overlapping expertise, and more than one ontology engineer on the team.”
 - Based on our experiences, three types of participants are needed in order to have a team that can establish a good modular ontology: domain experts, ontology engineers, and data scientists.”