Relational
Knowledge Graph
Management Systems

relationalAl

Martin Bravenboer, VP Engineering

RelationalAl

e RAI brings together experts from DB, PL, ML and business domains
e RAl develops a Relational KGMS

JOTs==C
Relational Knowledge Graph Management System (KGMS)

e Why Relational?
e How do we define knowledge?
e \What does it mean to manage a knowledge graph?

Rel - A Relational Language

e RAl designs Rel - A declarative language for modern data applications
e Modern data applications are knowledge graphs

The relational model represents all data using first-order relations

The purpose is independence of application logic
from changes in data representation:

data independence

SQL is not the relational model
(inadequacy of SQL is often used as motivation for new data models)

Directed graphs can be represented with relations E

(a, b)

(b, a)
(b, d)

(c, a)

o o

(¢,

Property graphs can be represented with relations @

movie(m)
title(m, "127 Hours")

Movie

title: 127 hours

Property graphs can be represented with relations @

movie(m)
AFtOr Director | title(m, "127 Hours™")
name: James Franco producer(d)

name: Danny Boyle
name(d, "Danny Boyle")

directed(d, m)

directed
actor(j)

painter(j)

. name(j, "James Franco")
Movie

title: 127 hours

acted(j, m)

Property graphs can be represented with relations @

movie(m)
A.ctor Director ., title(m, "127 Hours™")
AT Producer ' director(d)
name: James Franco producer(d)

€ name: Danny Boyle
I GET I X y Boy

d, llD B 1 [}
Ted, Teddy) name (anny Boyle")

directed(d, m)

directed

acted actor(j)
role: Aron Ralston painter(j)
. name(j, "James Franco")
Movie nickname(j, "Ted")

nickname(j, "Teddy")

title: 127 hours

acted(j, m)
role(j, m, "Aron Ralston")

RDF can be represented with relations

["Mona Lisa" }

foaf:name

rdf:type type(p, l:'Paintir)g)"
Painting name(p, "Mona Lisa")

schema:creator
type(1l, :Person)

name(l, "Leonardo da Vinci")
rdf:type

Person =
creator(p, 1)

foaf:name

["Leonardo da Vinci"]

SQL tables can be represented with relations E

order order(1, 500, =05-03, 75)

key @ customer date price
1 500 2021-05-03 75
2

key (o1, 1)
customer(ol, 500)
date(ol, 2021-05-03)

price(ol, 75)

customer m

order:key(ol, 1)
order:customer(ol, 500)
500 order:date(ol, 2021-05-03)
order:price(ol, 75)

Relations can be used for many, if not all, data models and
are particularly well-suited for graphs.

Next:
How do we define knowledge?

10

Relational KGMS needs expressive reasoning

Reasoning: derive edges, labels and nodes in the knowledge graph.

We use a triangle query in a movie graph as a recurring example.

Triangle Query in Rel Triangle Graph Pattern

Actor

def employs child(d, a, m) =
directed(d, m) and
child(d, a) and
acted_in(a, m)

child acted in

Director directed

Movie

11

Relational KGMS needs expressive reasoning

Make spouse symmetric
def spouse(a, b) = spouse(b, a)

Label nodes for the Netherlands and Dutch citizens
def netherlands(c) = country code(c, "NL")
def dutch(p) = exists(c: citizen(p, c) and netherlands(c))

Count the number of edges in the graph
def edge count = count[edge]

Count the number of outgoing edges for every node x
def outdegree[x in vertex] = count[edge[x]]

For every team t, sum the salary of all team members p
def salaries by team[t in team] = sum[salary[p] for p in member[t]]

12

Relational KGMS needs expressive reasoning

Reasoning can involve recursion. Recursion in Rel is user-defined.

def reachable(a, b)
def reachable(a, b)

edge(a, b)
exists(t: edge(a, t) and reachable(t, b))

Rel supports mutual recursion.

Recursion can involve aggregation:

def shortest path[x, y] =

Min[length[x, V] 0
U

shortest path[x, t] +length[t, y] from t]

Cached computations need to be incrementally evaluated wrt changes in inputs (dynamic
graphs). Our approach is based on differential dataflow. 13

Relational KGMS needs integrity and knowledge

Two uses of constraints:

1. Constraints that derive new nodes and edges (reasoning)

2. Constraints for data integrity

Instead of repairing problems, data integrity can be enforced with integrity constraints:

ic forall(x: actor(x) implies person(x))

ic actor & person
ic forall(x, y: parent(x,

ic function(birthdate)

Deeper knowledge:

ic symmetric(spouse)
ic transitive(located _in)

) implies person(x) and person(y))

14

Relational KGMS needs schema-level features @

Key difference of SPARQL, Cypher, Graql, GQL, GSQL vs SQL is the intrinsic ability to write
queries over schema as well as data. This is critical for knowledge graph applications.

SPARQL

SELECT ?rell ?x ?rel2

WHERE {

winbier \ <http://dbpedia.org/resource/Danny Boyle> ?rell ?x .
e b ?X ?rel2 <http://dbpedia.org/resource/Aaron_Sorkin> .

michael
fassbender

Generic graph algorithms critically depend on this capability as well. 5

Relational KGMS needs schema-level features

Reasoning with specific as well as generic edge types:
with movie_graph use ...

def connections(a, rell, b, rel2, c) =
name(a, "Danny Boyle") and
name(c, "Aaron Sorkin") and
movie graph(rell, a, b) and
movie graph(rel2, b, c)

Reuse a generic algorithm over the movie graph:

pagerank[movie_graph[_]]
cosine_similarity[movie graph[_]]

def movie pagerank
def movie similarity

Generic reasoning used to define dutch(person), british(person) etc

def movie_graph(relname, person) =
movie graph:citizen(person, country) and
movie graph:citizenship(country, relname)

16

Relations can be used for many, if not all, data models and are
particularly well-suited for graphs.

To define knowledge, essential features are expressive
reasoning and integrity constraints, including recursion and
schema-level features.

Next:
Why are new join algorithms needed for

knowledge graphs?

17

Relational KGMS needs better join algorithms E

Join algorithms used in SQL-based relational databases are binary join algorithms. For
knowledge graphs intermediate results are too large. Example:

directed(d, m) and child(d, a) and acted_in(a, m) fictor

Binary join options: acted_in

child
d, m, a: directed(d, m) and child(d, a)
not selective: most directors have children!

d, m, a: directed(d, m) and acted_in(a, m) Director
not selective: every movie has a director and actors! directed

d, m, a: child(d, a) and acted _in(a, m) Movie

not selective: every actor has parents!

Triangle Graph Pattern

This is one reason for the stigma 'joins are bad'.
18

Relational KGMS needs better join algorithms

1) seek c

5)seek m
Female 6ose o000 o0

2) seek ¢ 6) seek m
Asian K—\‘ ‘/ ® O »
3) seek f 7) seek m
Director '/\“./\‘

O
4) seek g
OscarWinner .‘/" *‘
m

a b ¢ d e f g

n

0
o p

Worst-case optimal join (WCO]J) algorithms use the sparsity of all relations
to narrow down the search.

Leapfrog Triejoin (LFTJ), GenericJoin and Dovetail Join are WCOJ algorithms. 14 7ha0

Relational KGMS needs better join algorithms
Multi-way joins are used continuously during reasoning, not just for unary joins
child(d, a) and directed(d, m) and acted_in(a, m)

Actor
Given a variable ordering of d, a, m (determined by query optimizer)

child(d,)

acted_in
directed(d,)

find directors d who directed some child
movie and have some child

child[d](a)

find children a of director d who
acted _in(a,)

acted_in some movie Director directed

Movie

directed[d](m) find movies m directed by d and
acted_in[a](m) acted_in by actor a (intersection)

RAI' KGMS uses a JIT-compiled WCO]J algorithm called Dovetall join.
20

Relational KGMS needs better join algorithms

RAI KGMS - Rel Neo4J - Cypher

def trlangle_counF[] = graphName: String,

count[a, b,

: configuration: Map
(a, b) and)
(a, ¢) and YIELD
(b, ¢)] nodeId: Integer,

triangleCount: Integer

Java

CALL gds.triangleCount.stream(

TigerGraph - GSQL

tri_count_fast*EXT*() FOR GRAPH *graph* {
SumAccum<int> , @outdegree;
SetAccum<int> @neighbors;

{*vertex-types*};
SELECT s
FROM :s
ACCUM s.@outdegree += *s_outdegrees*;
SELECT s
FROM :s -(*edge-types*) -:t
ACCUM IF s == t THEN
s.@outdegree += -1
END;
SELECT t
FROM :s-(*edge-types*)-> :t
WHERE s.@outdegree > t.@outdegree OR
(s.@outdegree == t.@outdegree AND
getvid(s) > getvid(t))
ACCUM t.@neighbors += getvid(s);
SELECT t
FROM :s-(*edge-types*)-> :t
WHERE s != t
ACCUM += COUNT(
s.@neighbors INTERSECT t.@neighbors);
/2 num_triangles;

Relational KGMS needs better join algorithms

e Worst-case Optimal Join Algorithms
Hung Q. Ngo, Ely Porat, Christopher Ré, Atri Rudra.
PODS 2012 (Best Paper Award).

e Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm
Todd L. Veldhuizen
ICDT 2014 (Best Newcomer Award)

e A Worst-case Optimal Join Algorithm for SPARQL
Aidan Hogan, Cristian Riveros, Carlos Rojas, Adrian Soto
ISWC 2019

e Worst-Case Optimal Graph Joins in Almost No Space
Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-Ledesma and Adrian Soto
SIGMOD 2021

22

Relations can be used for many, if not all, data models and are
particularly suited for knowledge graphs.

To define knowledge, essential features are expressive reasoning
and integrity constraints, including recursion and schema-level

features.

WCOJ algorithms are key for graph queries and reasoning in
knowledge graph systems.

Next:

23

Relational KGMS needs semantic optimization @

Goal: users write high-level declarative specifications, not algorithms

RAI KGMS uses knowledge (semantics) to optimize the program.

General mathematical knowledge
commutativity, associativity, semiring, ...

Domain-specific knowledge
from constraints for reasoning and integrity (functional dependencies)

24

Relational KGMS needs semantic optimization

Using mathematical knowledge in semantic optimization

min[i, j: f[i] + g[i]] min[i: F[i] + g[i]1] count[f X g]

optimizer optimizer

min[f] + min[g] count[f] * count[g]

25

Relational KGMS needs semantic optimization

Push min aggregation into a recursive path definition to derive Dijkstra's algorithm

def path[x, vy] length[x, v]
def path[x, y] = path[x, t] + length[t, v] from t

def shortest path[x, v] = min[path[x, v]]

optimizer

def shortest path[x, y] =
min[length[x, v]
U
shortest path[x, t] + length[t, v] from t]

26

Relational KGMS needs semantic optimization

Instead of tying shortest_path to a specific relation length, we want a reusable abstraction

def path[x, y]
def path[x, y]

length[x, y]
path[x, t] + length[t, y] from t

def shortest path[x, y] = min[path[x, y]]

Introduce a higher-order parameter W for the weighted edge relation:

def path[W, x, y] = W[x, y]
def path[W, x, y] = path[x, t] + W[t, y] from t

def shortest path[W, x, y] = min[path[W, x, y]]

27

Relational KGMS needs semantic optimization

Optimize all-pairs shortest path to single-source shortest path using
demand transformation

def bacon_number[p] =
shortest path[co star X 1, KevinBacon, p]

optimizer

def bacon _number[p] =
Min[num:
co_star(KevinBacon, p) and num = 1
or exists(t: co_star(t, p) and num = bacon number[t] + 1)

28

Relational KGMS needs semantic optimization

e FAQ: Questions Asked Frequently
Mahmoud Abo Khamis, Hung Q. Ngo, Atri Rudra
PODS 2016 (Best Paper Award)

e What Do Shannon-type Inequalities, Submodular Width, and
Disjunctive Datalog Have to Do with One Another?
Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu
PODS 2017

e Precise complexity analysis for efficient Datalog queries
K Tuncay Tekle, Yanhong A Liu
PPDP 2010

29

Relations can be used for many, if not all, data models and are
particularly suited for knowledge graphs.

To define knowledge, essential features are expressive reasoning
and integrity constraints, including recursion and schema-level

features.

WCQJ algorithms are key for graph queries and reasoning in
knowledge graph systems.

Deep knowledge of the application logic is used to derive
efficient algorithms from declarative specifications.

Next:

30

Relational Machine Learning

The Rel library includes feature engineering capabilities defined in Rel itself:

def zscore_normalization[F,] = (F[] - mean[F]) / stddev[F]

Predict and cost functions can be used with autodiff and trained with gradient descent.

def mse[, Y] = sum[s (Y]] - [1) ~ 2] / count[VY]
def rmsel , Y] = sgrt[mse[, Y11 - R
2{: (Uz'_'yz)
Use to define a cost function for a specific linear regression model: : n

def cost[W] = rmse[predict linear[features, W], life satisfaction]

With our research network we have developed training methods that do not require
creating a design matrix of features and operate directly on the relational structure,
exploiting knowledge of the relational model (exactly as in semantic optimization) 31

Deep Learning in a Relational Language

Graph embeddings and neural networks are expressible in Rel and can be used for
prediction (model deployment) as well as training.

def relu[v where v <= 0] = @ Yy = relu E w; T; + b
def relu[v where v > 0] = :
)
def sigmoid[v] =
1.0 / (1.0 + natural_exp[-1.0 * v]) 1)
sigmoid(z) = ———
1
def activation[t, 1, j] =
sigmoid[sum[k: weights[1l, j, k] * activation[t, , J]] + biases[1l, j]]
from where next_layer|[] =

(this Is still very experimental) 32

Relational Machine Learning @

A Layered Aggregate Engine for Analytics Workloads
M. Schleich, D. Olteanu, M. Abo Khamis, H. Ngo and X. Nguyen
SIGMOD 2019

Learning Models over Relational Data Using Sparse Tensors and Functional Dependencies
Mahmoud Abo Khamis, Hung Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich
PODS 2018, TODS 2020

The Relational Data Borg is Learning

Dan Olteanu, VLDB 2020 Keynote
https://www.youtube.com/watch?v=0icOjMjOpMO
https://www.youtube.com/watch?v=kWm-0BnbEoU

Structure-Aware Machine Learning over Multi-Relational Databases
Maximilian Schleich, PhD thesis
Honorable mention for the 2021 SIGMOD Jim Gray Doctoral Dissertation Award

Relational Knowledge Graphs as the Foundation for Artificial Intelligence
Molham Aref
https://www.youtube.com/watch?v=VpyGbjUzG7Y 33

https://www.youtube.com/watch?v=0ic0jMjOpM0
https://www.youtube.com/watch?v=kWm-0BnbEoU
https://www.youtube.com/watch?v=VpyGbjUzG7Y

RelationalAl KGMS Capabilities

Capabilities covered today

Key system-related capabilities

Reasoning

e Recursion
e Incremental computation

Data integrity and knowledge
e General integrity constraints
Join algorithms
e Worst-case optimal joins
Semantic optimization

e Using deep mathematical knowledge to
optimize programs

Machine learning

e (Cost functions and autodiff

If you love this: RelationalAl is hiring!

Storage/compute separation
e Scale arbitrarily for storage and up/down for compute.
Versioning and temporal features

Dynamic knowledge graph (changes)

Refer to past versions of the knowledge graph
Fork a knowledge graph and submit pull request
Reasoning with temporal relations

Ingest essentially any data
e (CSV,JSON, Parquet, RDF, images, text, documents
Data and model sharing

e Enormous waste in the world copying data + cost of
resulting inconsistency
e Stock markets, weather data, wikidata, etc

34

