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RelationalAI
● RAI brings together experts from DB, PL, ML and business domains
● RAI develops a Relational KGMS

Relational                                      Management System (KGMS)
● Why Relational?
● How do we define knowledge?
● What does it mean to manage a knowledge graph?

Rel - A Relational Language
● RAI designs Rel - A declarative language for modern data applications
● Modern data applications are knowledge graphs
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        Database
Knowledge Graph



The relational model represents all data using first-order relations

The purpose is independence of application logic
from changes in data representation:

data independence

SQL is not the relational model
(inadequacy of SQL is often used as motivation for new data models)
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edge(a, b)

edge(b, a)
edge(b, d)

edge(c, a)
edge(c, b)
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Directed graphs can be represented with relations



      Movie

             title: 127 hours

movie(m)
title(m, "127 Hours")

Property graphs can be represented with relations



      Movie

             title: 127 hours

      

    Director
   Producer
  name: Danny Boyle

      

      Actor
    Painter
  name: James Franco

movie(m)
title(m, "127 Hours")

director(d)
producer(d)
name(d, "Danny Boyle")

directed(d, m)

actor(j)
painter(j)
name(j, "James Franco")

acted(j, m)

acted
directed

Property graphs can be represented with relations



      Movie

             title: 127 hours

      

    Director
   Producer
  name: Danny Boyle

      

      Actor
    Painter
  name: James Franco
  nickname:
       {Ted, Teddy}

movie(m)
title(m, "127 Hours")

director(d)
producer(d)
name(d, "Danny Boyle")

directed(d, m)

actor(j)
painter(j)
name(j, "James Franco")
nickname(j, "Ted")
nickname(j, "Teddy")

acted(j, m)
role(j, m, "Aron Ralston")

acted
role: Aron Ralston

directed

Property graphs can be represented with relations



l      

p

foaf:name

type(p, :Painting)
name(p, "Mona Lisa")

type(l, :Person)
name(l, "Leonardo da Vinci")

creator(p, l)

"Mona Lisa"

foaf:name

schema:creator

"Leonardo da Vinci"

RDF can be represented with relations

Painting
rdf:type

Person
rdf:type



order

 key  customer  date  price

 1  500  2021-05-03  75

 2 ... ... ...
key(o1, 1)
customer(o1, 500)
date(o1, 2021-05-03)
price(o1, 75)

2021-05-03

75

1

500

key

price

date

     o1

customer

SQL tables can be represented with relations

order(1, 500, 2021-05-03, 75)

order:key(o1, 1)
order:customer(o1, 500)
order:date(o1, 2021-05-03)
order:price(o1, 75)



Relations can be used for many, if not all, data models and 
are particularly well-suited for graphs.

Next:
How do we define knowledge?
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Relational KGMS needs expressive reasoning

    def employs_child(d, a, m) =

        directed(d, m) and

        child(d, a) and

        acted_in(a, m)

d

a

mdirected

acted_in
child

Movie

Actor

Director

Reasoning: derive edges, labels and nodes in the knowledge graph. 

We use a triangle query in a movie graph as a recurring example.

Triangle Graph PatternTriangle Query in Rel
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Relational KGMS needs expressive reasoning

Make spouse symmetric 
      def spouse(a, b) = spouse(b, a)

Label nodes for the Netherlands and Dutch citizens
      def netherlands(c) = country_code(c, "NL")

      def dutch(p) = exists(c: citizen(p, c) and netherlands(c))

Count the number of edges in the graph
       def edge_count = count[edge]

Count the number of outgoing edges for every node x
      def outdegree[x in vertex] = count[edge[x]]

For every team t, sum the salary of all team members p
      def salaries_by_team[t in team] = sum[salary[p] for p in member[t]]
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Relational KGMS needs expressive reasoning

Reasoning can involve recursion. Recursion in Rel is user-defined.

    def reachable(a, b) = edge(a, b)

    def reachable(a, b) = exists(t: edge(a, t) and reachable(t, b))

Rel supports mutual recursion.

Recursion can involve aggregation:

    def shortest_path[x, y] =
        Min[length[x, y]
            ∪
            shortest_path[x, t] +length[t, y] from t]

Cached computations need to be incrementally evaluated wrt changes in inputs (dynamic 
graphs). Our approach is based on differential dataflow.

x

t

y

2

3
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Two uses of constraints:

1. Constraints that derive new nodes and edges (reasoning)
2. Constraints for data integrity

Instead of repairing problems, data integrity can be enforced with integrity constraints:

    ic forall(x: actor(x) implies person(x))

    ic actor ⊆ person

    ic forall(x, y: parent(x, y) implies person(x) and person(y))

    ic function(birthdate)

Deeper knowledge:

    ic symmetric(spouse)

    ic transitive(located_in) 14

Relational KGMS needs integrity and knowledge



Key difference of SPARQL, Cypher, Graql, GQL, GSQL  vs SQL is the intrinsic ability to write 
queries over schema as well as data. This is critical for knowledge graph applications.

Generic graph algorithms critically depend on this capability as well. 15

Relational KGMS needs schema-level features

SELECT ?rel1 ?x ?rel2
WHERE {
    <http://dbpedia.org/resource/Danny_Boyle> ?rel1 ?x .
    ?x ?rel2 <http://dbpedia.org/resource/Aaron_Sorkin> .
}

SPARQL
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Relational KGMS needs schema-level features

Reasoning with specific as well as generic edge types:

        with movie_graph use ...

        def connections(a, rel1, b, rel2, c) =
            name(a, "Danny Boyle") and
            name(c, "Aaron Sorkin") and
            movie_graph(rel1, a, b) and
            movie_graph(rel2, b, c)

Reuse a generic algorithm over the movie graph:

        def movie_pagerank   = pagerank[movie_graph[_]]
        def movie_similarity = cosine_similarity[movie_graph[_]]

Generic reasoning  used to define  dutch(person), british(person) etc

        def movie_graph(relname, person) =
            movie_graph:citizen(person, country) and
            movie_graph:citizenship(country, relname)



Relations can be used for many, if not all, data models and are 
particularly well-suited for graphs.

To define knowledge, essential features are expressive 
reasoning and integrity constraints, including recursion and 
schema-level features.

Next:
Why are new join algorithms needed for
knowledge graphs?
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Join algorithms used in SQL-based relational databases are binary join algorithms. For 
knowledge graphs intermediate results are too large. Example:

      directed(d, m) and child(d, a) and acted_in(a, m)

Binary join options:

      d, m, a: directed(d, m) and child(d, a)

        not selective: most directors have children!

      d, m, a: directed(d, m) and acted_in(a, m)

        not selective: every movie has a director and actors!

      d, m, a: child(d, a) and acted_in(a, m)

        not selective: every actor has parents!

This is one reason for the stigma 'joins are bad'.
18

Relational KGMS needs better join algorithms

d

a

mdirected

acted_in
child

Movie

Actor

Director

Triangle Graph Pattern
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Relational KGMS needs better join algorithms

Female

Asian

Director

OscarWinner

Worst-case optimal join (WCOJ) algorithms use the sparsity of all relations 
to narrow down the search.

Leapfrog Triejoin (LFTJ), GenericJoin and Dovetail Join are WCOJ algorithms.

ponb

7) seek m 

6) seek m 

3) seek f

5) seek m

4) seek g 

2) seek c

1) seek c

c d e f g

Chloé Zhao
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Relational KGMS needs better join algorithms
Multi-way joins are used continuously during reasoning, not just for unary joins

d

a

mdirected

acted_in
child

    child(d, a) and directed(d, m) and acted_in(a, m)

Given a variable ordering of d, a, m (determined by query optimizer)

     child(d, _)
    directed(d, _)

    child[d](a)
    acted_in(a, _)

    directed[d](m)
    acted_in[a](m)

RAI KGMS uses a JIT-compiled WCOJ algorithm called Dovetail join.

find directors d who directed some 
movie and have some child

find children a of director d who 
acted_in some movie

find movies m directed by d and 
acted_in by actor a (intersection)

Movie

Actor

Director
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Relational KGMS needs better join algorithms

CREATE QUERY tri_count_fast*EXT*() FOR GRAPH *graph* {
        SumAccum<int> @@cnt, @outdegree;
        SetAccum<int> @neighbors;
        all = {*vertex-types*};
        all = SELECT s
              FROM all:s
              ACCUM s.@outdegree += *s_outdegrees*;
        tmp = SELECT s
              FROM all:s -(*edge-types*) -:t
              ACCUM IF s == t THEN 
                      s.@outdegree += -1
              END;
        tmp = SELECT t
              FROM all:s-(*edge-types*)-> :t
              WHERE s.@outdegree > t.@outdegree OR
                  (s.@outdegree == t.@outdegree AND 
                   getvid(s) > getvid(t))
              ACCUM t.@neighbors += getvid(s);
        tmp = SELECT t
              FROM all:s-(*edge-types*)-> :t
              WHERE s != t
              ACCUM @@cnt += COUNT(
                 s.@neighbors INTERSECT t.@neighbors);
        PRINT @@cnt/2 AS num_triangles;
}

TigerGraph - GSQLNeo4J - CypherRAI KGMS - Rel

def triangle_count[E] =
    count[a, b, c:
        E(a, b) and
        E(a, c) and
        E(b, c)]

CALL gds.triangleCount.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  triangleCount: Integer
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Relational KGMS needs better join algorithms

● Worst-case Optimal Join Algorithms
Hung Q. Ngo, Ely Porat, Christopher Ré, Atri Rudra.
PODS 2012 (Best Paper Award).

● Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm
Todd L. Veldhuizen
ICDT 2014 (Best Newcomer Award)

● A Worst-case Optimal Join Algorithm for SPARQL
Aidan Hogan, Cristian Riveros, Carlos Rojas, Adrián Soto
ISWC 2019

● Worst-Case Optimal Graph Joins in Almost No Space
Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-Ledesma and Adrián Soto
SIGMOD 2021



Relations can be used for many, if not all, data models and are 
particularly suited for knowledge graphs.

To define knowledge, essential features are expressive reasoning 
and integrity constraints, including recursion and schema-level 
features.

WCOJ algorithms are key for graph queries and reasoning in 
knowledge graph systems.

Next:
How do we leverage knowledge in the system?
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Relational KGMS needs semantic optimization

Goal: users write high-level declarative specifications, not algorithms

RAI KGMS uses knowledge (semantics) to optimize the program.

General mathematical knowledge
commutativity, associativity, semiring, ...

Domain-specific knowledge
from constraints for reasoning and integrity (functional dependencies)
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Relational KGMS needs semantic optimization

min[i, j: f[i] + g[j]]

min[f] + min[g]

count[f ✕ g]

count[f] * count[g]

Using mathematical knowledge in semantic optimization

optimizer optimizer

min[i: f[i] + g[i]]

min[f] + min[g]

optimizer
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Relational KGMS needs semantic optimization

    def path[x, y] = length[x, y]
    def path[x, y] = path[x, t] + length[t, y] from t

  def shortest_path[x, y] = min[path[x, y]]

    def shortest_path[x, y] =
      min[length[x, y]
          ∪
          shortest_path[x, t] + length[t, y] from t]

optimizer

Push min aggregation into a recursive path definition to derive Dijkstra's algorithm
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Relational KGMS needs semantic optimization

    def path[W, x, y] = W[x, y]
    def path[W, x, y] = path[x, t] + W[t, y] from t

  def shortest_path[W, x, y] = min[path[W, x, y]]

Instead of tying shortest_path to a specific relation length, we want a reusable abstraction

Introduce a higher-order parameter W for the weighted edge relation:

    def path[x, y] = length[x, y]
    def path[x, y] = path[x, t] + length[t, y] from t

  def shortest_path[x, y] = min[path[x, y]]
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Relational KGMS needs semantic optimization

def bacon_number[p] =
    shortest_path[co_star ✕ 1, KevinBacon, p]

def bacon_number[p] =
    Min[num:
        co_star(KevinBacon, p) and num = 1
        or exists(t: co_star(t, p) and num = bacon_number[t] + 1)
    ]

Optimize all-pairs shortest path to single-source shortest path using
 demand transformation

optimizer



29

Relational KGMS needs semantic optimization

● FAQ: Questions Asked Frequently
Mahmoud Abo Khamis, Hung Q. Ngo, Atri Rudra
PODS 2016 (Best Paper Award)

● What Do Shannon-type Inequalities, Submodular Width, and 
Disjunctive Datalog Have to Do with One Another?
Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu
PODS 2017

● Precise complexity analysis for efficient Datalog queries
K Tuncay Tekle, Yanhong A Liu
PPDP 2010



Relations can be used for many, if not all, data models and are 
particularly suited for knowledge graphs.

To define knowledge, essential features are expressive reasoning 
and integrity constraints, including recursion and schema-level 
features.

WCOJ algorithms are key for graph queries and reasoning in 
knowledge graph systems.

Deep knowledge of the application logic is used to derive 
efficient algorithms from declarative specifications.

Next:
How do we incorporate machine learning?
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The Rel library includes feature engineering capabilities defined in Rel itself:

  def zscore_normalization[F, x...] = (F[x...] - mean[F]) / stddev[F]

Predict and cost functions can be used with autodiff and trained with gradient descent.

  def mse[YHAT, Y] = sum[x... : (Y[x...] - YHAT[x...]) ^ 2] / count[Y]

  def rmse[YHAT, Y] = sqrt[mse[YHAT, Y]]

Use to define a cost function for a specific linear regression model:

  def cost[W] = rmse[predict_linear[features, W], life_satisfaction]

With our research network we have developed training methods that do not require 
creating a design matrix of features and operate directly on the relational structure, 
exploiting knowledge of the relational model (exactly as in semantic optimization) 31

Relational Machine Learning



Graph embeddings and neural networks are expressible in Rel and can be used for 
prediction (model deployment)  as well as training.

    def relu[v where v <= 0] = 0

    def relu[v where v > 0] = v

    def sigmoid[v] =

        1.0 / (1.0 + natural_exp[-1.0 * v])

    def activation[t, l, j] =

       sigmoid[sum[k: weights[l, j, k]  * activation[t, prevl, j]] + biases[l, j]]

       from prevl where next_layer[prevl] = l

(this is still very experimental) 32

Deep Learning in a Relational Language
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Relational Machine Learning
● A Layered Aggregate Engine for Analytics Workloads

M. Schleich, D. Olteanu, M. Abo Khamis, H. Ngo and X. Nguyen
SIGMOD 2019

● Learning Models over Relational Data Using Sparse Tensors and Functional Dependencies
Mahmoud Abo Khamis, Hung Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich
PODS 2018, TODS 2020

● The Relational Data Borg is Learning
Dan Olteanu, VLDB 2020 Keynote
https://www.youtube.com/watch?v=0ic0jMjOpM0 
https://www.youtube.com/watch?v=kWm-0BnbEoU 

● Structure-Aware Machine Learning over Multi-Relational Databases
Maximilian Schleich, PhD thesis
Honorable mention for the 2021 SIGMOD Jim Gray Doctoral Dissertation Award

● Relational Knowledge Graphs as the Foundation for Artificial Intelligence
Molham Aref
https://www.youtube.com/watch?v=VpyGbjUzG7Y 

https://www.youtube.com/watch?v=0ic0jMjOpM0
https://www.youtube.com/watch?v=kWm-0BnbEoU
https://www.youtube.com/watch?v=VpyGbjUzG7Y


Capabilities covered today

Reasoning
● Recursion
● Incremental computation

Data integrity and knowledge
● General integrity constraints

Join algorithms
● Worst-case optimal joins

Semantic optimization
● Using deep mathematical knowledge to 

optimize programs

Machine learning
● Cost functions and autodiff
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RelationalAI KGMS Capabilities

Key system-related capabilities

Storage/compute separation
● Scale arbitrarily for storage and up/down for compute.

Versioning and temporal features
● Dynamic knowledge graph (changes)
● Refer to past versions of the knowledge graph
● Fork a knowledge graph and submit pull request
● Reasoning with temporal relations

Ingest essentially any data
● CSV, JSON, Parquet, RDF, images, text, documents

Data and model sharing
● Enormous waste in the world copying data + cost of 

resulting inconsistency
● Stock markets, weather data, wikidata, etc

If you love this: RelationalAI is hiring!


