
Frank McSherry
mcsherry@materialize.io

@frankmcsherry

mailto:mcsherry@materialize.io

A motivating problem

tweet!

@frank! #dataflow

What is the most popular #hashtag?

by component of @mention graph?

in real-time (millisecond latencies)?

An expressive programming framework that

updates computation when inputs change.

Differential dataflow

http://github.com/TimelyDataflow/differential-dataflow

[based off of Differential Dataflow, CIDR 2013]

http://github.com/TimelyDataflow/differential-dataflow

Goal: collection-oriented programming language,

 but then allow the collections to change.

People are good at programming with collections.

 (at least, better than with streams)

 fn your_prog: [D] -> [R] = /* .. */;

 // Intended experience:

 for t in times {

 let output[t] = your_prog(input[t]);

 }

d_in: Stream<(Data, Time, Diff)>d_output: Stream<(Data, Time, Diff)>

 let nodes = /* pairs (node, bool) */;

 let edges = /* pairs (node, node) */;

 nodes.iterate(|reach| {

 reach.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 });

 for t in times {

 nodes.insert(..); nodes.remove(..);

 edges.insert(..); edges.remove(..);

 }

 nodes.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

input streams of changes

“program” : dataflow assembly

dataflow execution

 let nodes = /* pairs (node, bool) */;

 let edges = /* pairs (node, node) */;

 nodes.iterate(|reach| {

 reach.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 });

 for t in times {

 nodes.insert(..); nodes.remove(..);

 edges.insert(..); edges.remove(..);

 }

 nodes.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 let nodes = /* pairs (node, bool) */;

 let edges = /* pairs (node, node) */;

 nodes.iterate(|reach| {

 reach.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 });

 for t in times {

 nodes.insert(..); nodes.remove(..);

 edges.insert(..); edges.remove(..);

 }

 nodes.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 let nodes = /* pairs (node, bool) */;

 let edges = /* pairs (node, node) */;

 nodes.iterate(|reach| {

 reach.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 });

 for t in times {

 nodes.insert(..); nodes.remove(..);

 edges.insert(..); edges.remove(..);

 }

 nodes.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 let nodes = /* pairs (node, bool) */;

 let edges = /* pairs (node, node) */;

 nodes.iterate(|reach| {

 nodes.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 });

 for t in times {

 nodes.insert(..); nodes.remove(..);

 edges.insert(..); edges.remove(..);

 }

 let nodes = /* pairs (node, bool) */;

 let edges = /* pairs (node, node) */;

 nodes.iterate(|reach| {

 reach.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 });

 for t in times {

 nodes.insert(..); nodes.remove(..);

 edges.insert(..); edges.remove(..);

 }

Stream<((node, bool), (Time, u64), int)>

Secret sauce: Incremental computation done with
respect to a partial order, rather than a total order.

collection(t) = sum_{s ≤ t} differences(s)

Reach cores livejournal orkut

GraphX 128 36s 48s

SociaLite 128 52s 67s

Myria 128 5s 6s

BigDatalog 128 17s 20s

Differential 1 7s 15s

 update 1, 2 [BigDatalog, SIGMOD 2016]

Reach cores livejournal orkut

GraphX 128 36s 48s

SociaLite 128 52s 67s

Myria 128 5s 6s

BigDatalog 128 17s 20s

Differential 1 7s 15s

 update 1

Reach cores livejournal orkut

GraphX 128 36s 48s

SociaLite 128 52s 67s

Myria 128 5s 6s

BigDatalog 128 17s 20s

Differential 1 7s 15s

 update 1 50us 62us

60% do something (30-100us)

one sample > 1ms (20ms)

40% of the samples change nothing (3us)

 let nodes = /* pairs (node, bool) */;

 let edges = /* pairs (node, node) */;

 nodes.iterate(|reach| {

 reach.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .distinct() // extended neighborhood

 });

 for t in times {

 nodes.insert(..);

 edges.remove(..);

 }

 let nodes = /* pairs (node, node) */;

 let edges = /* pairs (node, node) */;

 nodes.iterate(|reach| {

 reach.join(&edges) // one hop neighbors

 .concat(&nodes) // plus original nodes

 .min() // smallest labels

 });

 for t in times {

 nodes.insert(..);

 edges.remove(..);

 }

distinctjoin concat

nodes

edges

Stream<(Data, Time, Diff)>

(data, time, diff)

(data, time, diff)

(data, time, diff)

(data, time, diff)

(data, time, diff)

distinctjoin concat

nodes

edges
distinctjoin concat

nodes

edges

distinctdistinctjoin concat

nodes

edges

distinctjoin concat

nodes

edges

worker 0

worker 1

(data, time, diff)

(data, time, diff)

(data, time, diff)

???

Op

input data: { (data, time, diff) }

output data: { (data, time, diff) }

x y ?dx dy

Op x ydx? (+) - =

dydx

Incremental Dataflow

Opx ydx dydydx

Iterative Dataflow
e.g. semi-naive bottom-up datalog

Opx ydx dydydx

Differential Dataflow

dx ?dx dy dydx dy

dy dydxdxdx dy

dy dydxdxdx dy

Opx y

Differential Dataflow

input data: { (data, time, diff) }

output data: { (data, time, diff) }

Important: times are only partially ordered

Differentiation on a discrete partial order

Opx y

Differential Dataflow
with data-parallel operators

Opx y

Differential Dataflow

Opx yOpx y

with data-parallel operators

Opx y

Differential Dataflow

Opx y

Opx y

dx

dx

dx

dy

dy

dydx dy

with data-parallel operators

dx dy

Opx y

Differential Dataflow

dx dy

with data-parallel operators

dx dy

Op

x y

Differential Dataflow

dx dy

with data-parallel operators

dx dy

time a

time b

time c

dx

time d

< time d?

< time d?

< time d?

dy

time d

Op

x y

Differential Dataflow

dx dy

with data-parallel operators

dx dy

time a

time b

time c

dx time ddy

Diversion: Compaction

Op

x y

dx dy

dx dy

time a

time b

time c

dx time ddy

Diversion: Compaction

Op

x y

dx dy

dx dy

time a

time b

time c

dx time ddy

Let F be a set of times lower-bounding

those times we might see in the future.

Each time t has a “representative” from

this equivalence class, computed as

Diversion: Compaction

Op

x y

dx dy

dx dy

time a

time b

time c

dx time ddy

Let F be a set of times lower-bounding

those times we might see in the future.

Each time t has a “representative” from

this equivalence class, computed as

Diversion: Compaction

Op

x y

dx dy

dx dy

time a

time b

time c

dx time ddy

Let F be a set of times lower-bounding

those times we might see in the future.

Each time t has a “representative” from

this equivalence class, computed as

Connected components on

the Twitter @mention graph

Pause

Things left unsaid
Arrangements

Operator state can be shared with others.

Credit due to: “declarative programming”.

Open- v. Closed-loop
The world changes even if we are not ready.

Systems should handle batches of changes.

Groups and Semi-groups
All “Diffs” can be arbitrary (semi-)groups.

Types encode the nature of changes.

https://github.com/TimelyDataflow/differential-dataflow
https://github.com/TimelyDataflow/timely-dataflow
https://github.com/TimelyDataflow/abomonation
https://github.com/TimelyDataflow/diagnostics

https://materialize.com
@frankmcsherry

https://materialize.com

