ol

MATERIALIZE

Frank McSherry
mcsherry@materialize.io
@frankmcsherry

mailto:mcsherry@materialize.io

A motivating problem

e

e .

@ #dataflow

What is the most popular #hashtag”

by component of @mention graph”

in real-time (millisecond latencies)?

Differential datatlow

An expressive programming framework that
updates computation when inputs change.

http://github.com/TimelyDataflow/differential-dataflow
[based off of Differential Dataflow, CIDR 2013]

http://github.com/TimelyDataflow/differential-dataflow

Goal: collection-oriented programming language,
but then allow the collections to change.

People are good at programming with collections.
(at least, better than with streams)

fn your_prog: [D] —> [R] = /% .. %x/;

// Intended experience:
for t in times {

let output[t] = your_prog(input[t]);
}

d output: Stream<(Data, Time, Diff)>

e ——— e —— - e

input streams of changes

/* pairs (node, bool) *x/;
/* pairs (node, node) x/;

e —— - e ——— S ——————

let nodes
let edges

“program” : dataflow assembly

nodes.join(&edges) // one hop neighbors

.concat(&nodes) // plus original nodes
.distinct() // extended neighborhood

e —— e — _ ——

dataflow execution

for t in times {

nodes.insert(..);
edges.insert(..);

/* pairs (node, bool) x/;
/* pairs (node, node) x/;

let nodes
let edges

nodes.join(&edges) // one hop neighbors
.concat(&nodes) // plus original nodes
.distinct() // extended neighborhood

for t in times {
nodes.insert(..):
edges.insert(..);

/* pairs (node, bool) x/;
/* pairs (node, node) x/;

let nodes
let edges

nodes.join(&edges) // one hop neighbors
.concat(&nodes) // plus original nodes
.distinct() // extended neighborhood

for t in times {
nodes.insert(..):; nodes.remove(..):
edges.insert(..); edges.remove(..);

/* pairs (node, bool) x/;
/* pairs (node, node) x/;

let nodes
let edges

nodes.join(&edges) // one hop neighbors
.concat(&nodes) // plus original nodes
.distinct() // extended neighborhood

for t in times {
nodes.insert(..):; nodes.remove(..):
edges.insert(..); edges.remove(..);

/* pairs (node, bool) *x/;
/* pairs (node, node) x/;

let nodes
let edges

nodes.iterate(|reach| {

nodes.join(&edges) // one hop neighbors
.concat(&nodes) // plus original nodes
.distinct() // extended neighborhood

r);

for t in times {
nodes.insert(..); nodes.remove(..):
edges.insert(..); edges.remove(..);

/* pairs (node, bool) x/;
/* pairs (node, node) x/;

let nodes
let edges

nodes.iterate(|reach| {

reach.join(&edges) // one hop neighbors
.concat(&nodes) // plus original nodes
.distinct() // extended neighborhood

r); Stream<((node, bool), (Time, u64), int)>

for t 1n t
nodes.
edges.

Secret sauce: Incremental computation done with
respect to a partial order, rather than a total order.

collection(t) = sum_{s =t} differences(s)

Reach livejournal

GraphX

Socialite
Myria

BigDatalog

[BigDatalog, SIGMOD 2016]

Reach

GraphX

Socialite
Myria
BigDatalog

Differential

livejournal

cores livejournal orkut

10001
8001
6001
00t /
200.: i | 40% of the samples change nothing (3us)
: microseconds
1 10 100 1000 20,000

[V TYIVTITT _— I

e — — ——

/* pairs (node, bool) *x/;
/* pairs (node, node) x/;

let nodes
let edges

nodes.iterate(|reach| {

reach.join(&edges) // one hop neighbors
.concat(&nodes) // plus original nodes
.distinct() // extended neighborhood

r);

for t in times {
nodes.insert(..):
edges. remove(..);

/* pairs (node, node) *x/;
/* pairs (node, node) x/;

let nodes
let edges

nodes.iterate(|reach| {

reach.join(&edges) // one hop neighbors
.concat(&nodes) // plus original nodes
.min() // smallest labels

r);

for t in times {
nodes.insert(..):
edges. remove(..);

Stream<(Data, Time, Diff)>

nodes

concat

(data, time, diff) (data, time, diff)

(data, time, diff) (data, time, diff)
(data, time, diff)

nodes

o ¢

join concat

nodes

edges

(data, time, ditf) |
worker 0 |} |

worker 1

concat =M (gistinct
(data, time, diff) 2 -
(data, time, dlff) L

Incremental Dataflow

input data: { (data, time, diff) }

output data: { (data, time, diff) }

= ©(0+0) -

lterative Dataflow

e.g. semi-naive bottom-up datalog

< dx dx X Op y dy dy

)

Differential Dataflow

Differential Dataflow

[input data: { (data, time, diff) }]
vV

—°_.°_?—.

[output data: { (data, time, diff) }]

Important: times are only partially ordered

Ditferentiation on a discrete partial order

Differential Dataflow

with data-parallel operators

—°_.°_°—.

Differential Dataflow

with data-parallel operators

—8-00——

Differential Dataflow

with data-parallel operators

Differential Dataflow

with data-parallel operators

ST

Differential Dataflow

with data-parallel operators

time d time d

time a < time d?
time b < time d?

time ¢ < time d?

Differential Dataflow

with data-parallel operators

time a
time b
time C

time d

Diversion: Compaction

time a
time b
time C

time d

Diversion: Compaction

time a
time b
time C

time d

Let F be a set of times lower-bounding
those times we might see in the future.

t1 = t when szp(tl < f iff 5 < f)

Each time t has a “representative” from
this equivalence class, computed as

repr(t) :== Veep(t A f)

THEOREM A.1 (CORRECTNESS). For any lattice el-
ement t and set F of lattice elements, t = repr(t).

PROOF. We prove both directions of the implication
in = separately, for all f > F. First assume t < f. By
assumption, f is greater than some element f’ of F, and
sot A f’ < f by the (lub) property. As a lower bound,
repp(t) < t A f’ for each f’ € F, and by transitivity
repr(t) < f. Second assume repp(t) < f. Because t <
(t A f’) for all f’ € F, thent < repp(t) by the (glb)
property and by transitivity ¢t < f.

THEOREM A.2 (OPTIMALITY). For any lattice ele-
ments t; and t, and set F of lattice elements, if t| =f t;

then repp(t;) = repg(ty).

PROOF. For all f € F we have both that t; < t; A f
and f < t; A f, the latter implying that t; A f > F. By
our assumption, ¢, agrees with ¢; on times greater than
F, making t, < t; A f for all f € F. By correctness,
repr(t,) agrees with t, on times greater than F, which
includes t; A f for f € F and so repr(t;) < t; A f for
all f € F. Because repg(t,) is less or equal to each term
in the greatest lower bound definition of repg(t;), it is
less or equal to repr(t;) itself. The symmetric argument
proves that repr(t;) < repr(t,), which implies that the

two are equal (by antisymmetry).

Diversion: Compaction

time a
time b
time C

time d

Let F be a set of times lower-bounding
those times we might see in the future.

t1 = t when szp(tl < f iff 5 < f)

Each time t has a “representative” from
this equivalence class, computed as

repr(t) :== Veep(t A f)

Diversion: Compaction

time a
time b
time C

time d

Let F be a set of times lower-bounding
those times we might see in the future.

ty =r t, when szp(tl < fifft, < f)

Each time t has a “representative” from
this equivalence class, computed as

repr(t) == Veep(t A f)

Connected components or
the Twitter @mention graph

Records in difference

1E+07

1E+06

1E+05

1E+04

1E+03

1E+02

1E+01

1E+00

——Stateless

-=-Prioritized

——|ncremental |

-e-Differential

\\\ (1s change)

Iteration number

100000

10000

1000

100

Milliseconds

10

0.1

——|ncremental |

-=-Prioritized
-e-Differential

(1s change)

— H\/\\ \'\':""\m,

Iteration number

I

23

I

Pause

Things left unsaid

Arrangements
Operator state can be shared with others.
Credit due to: “declarative programming”.

Open- v. Closed-loop
The world changes even if we are not ready.
Systems should handle batches of changes.

Groups and Semi-groups
All “Diffs” can be arbitrary (semi-)groups.
Types encode the nature of changes.

https://github.com/TimelyDataflow/differential-dataflow
[timely-dataflow
/abomonation

I I /diagnostics

https://materialize.com
@frankmcsherry

MATERIALIZE

https://materialize.com

