CS 520 Knowledge Graphs:
Querying Property Graphs with
[open]Cypher

Dr. Petra Selmer
Team Lead, Query Languages Standards & Research Group @ Neo4

petra.selmer@neo4j.com

April 8, 2021 neoqj

Talk outline

« Recap of the Property Graph Data Model|

- The Cypher query language

« Evolving Cypher through the openCypher project
 Introducing Graph Query Language (GQL)

« Proposed Extensions

, neoqj

The property graph data
model

neoqj

Property graph

Node
« Represents an entity within the
graph
 Has zero or more labels
« Has zero or more properties
« These may differ across nodes
with the same label(s) @

* Synonym: vertex

neoqj

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

Property graph

Relationship

« Adds structure to the graph
« Provides semantic context for
nodes
« Synonym: edge

* Has one type
« Has zero or more properties
« These may differ across

relationships with the same type "
« Relates nodes by type and direction
« Must have a start and an end node

neOA|]
https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

LIVES WITH

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

Property graph

born: May 29, 1970 name: “Ann”
twitter: “@dan” born: Dec5, 1975

Property

« Name-value pair (map) that can
go on nodes and edges

« Represents the data: e.g. name, %
age, weight etc ;. e

. String key; typed value (string, e
number, bOO|, |i5t) model: “V70

neoz.]
https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

LIVES WITH

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

The Cypher query
language

neoqj

e Created by Neo4j (2010)

IntrOd UCing Cther e openCypher (2015)

Declarative graph pattern matching language that adheres to modern paradigms
and is intuitive

* Graph patterns are very easily expressed
* Recursive queries

« Variable-length relationship chains

* Returning paths

SQL-like syntax and features

e DQL for reads (focus of this talk)
+ DML for updates

« DDL for creating constraints and indexes

Patterns are everywhere Eiggsiiacis

m@w ms
uuer)/ (query) -- [MODELED AS]--->(drawing)
~ / I
| [DRAWN ON] |
[IMPLEMENTS] / [TRANSLATED_ TO]
v I
‘ e boed (whiteboard) v
in (w,,m,,.r Al gen (code)< [IN COMMENT OF]- (ascii art)
MATCH (query)-[:MODELED_AS]->(drawing),]
(code)-[:IMPLEMENTS]->(query), Patterns are in
(drawing)-[: TRANSLATED_TO]->(ascii_art), ° I\/Iatching
(ascii_art)-[:IN_COMMENT_OF]->(code), ° Updates
(drawing)-[:DRAWN_ON]->(whiteboard) e DDL

WHERE query.id = $query_id '
o RETURN code.source ﬂeOAJ

Searching for (matching) graph patterns

NODE Relationship NODE
| | |

MATCH (:Person { name:"Dan"}) -[:LOVES]-> (whom) RETURN whom

| | |
LABEL PROPERTY VARIABLE

10 G‘QDGOL,J

Node and relationship patterns

() or (n) -->or -[r:TYPE]->
* Surround with parentheses * Wrapped in hyphens and square brackets
* Use an alias n to refer to our node later in + Arelationship type starts with a colon :
the query
<>
(n:Label)

» Specify the direction of the relationships
* Specify a Label, starting with a colon :
» Used to group nodes by roles or types -[:KNOWS {since: 2010}]->
(similar to tags)

* Relationships can have properties

(n:Label {prop: ‘value’})

" « Nodes can have properties (@neoy]

12

DQL: reading data

// Pattern description (ASCII art)
MATCH (me:Person)-[:FRIEND]->(friend)
// Filtering with predicates

WHERE me.name = ‘Frank Black’

AND friend.age > me.age

// Projection of expressions

Multiple patterns can be defined in a
single match clause (i.e. conjunctive
patterns):

MATCH (a)-(b)-(c), (b)-(f)

_)

RETURN toUpper(friend.name) AS name, friend.title AS title

// Order results
ORDER BY name, title DESC

Input: a property graph
Output: a table

neoqj

13

More complex Cypher patterns

Variable-length relationship patterns

// Traverse 1 or more FRIEND relationships
MATCH (me)-[:FRIEND*]-(foaf)

// Traverse 2 to 4 FRIEND relationships
MATCH (me)-[:FRIEND*2..4]-(foaf)

// Traverse union of LIKES and KNOWS 1 or more times
MATCH (me)-[:LIKES|KNOWS*]—(fan)

Returning paths

// Path binding returns all paths (p)

MATCH p = (a)-[:ONE]-()-[:TWO*]-()-[:THREE]-()

// Each path is a list containing the constituent nodes and relationships, in order
RETURN p

// Variation: return all constituent nodes/relationships of the path)
RETURN nodes(p) / relationships(p) ﬂeOAJ

Cypher: linear composition g

MATCH (me:Person {name: $name})-[:FRIEND]-(friend)
: WITH me, count(friend) AS friends

MATCH (me)-[:ENEMY]-(enemy)

RETURN friends, count(enemy) AS enemles

Aggregation
(grouped by ‘me’)

A WNR

WITH provides a horizon, allowing a query to be subdivided:

« Further matching can be done after a set of updates
« Expressions can be evaluated, along with aggregations [Readmg e }

+ Essentially acts like the pipe operator in Unix may be composed linearly in a
single query

Linear composition

* Query processing begins at the top and progresses linearly to the end (top-down ordering)
« Each clause is a function taking in a table T (/ine 1) and returning a table T
« T then acts as a driving table to the next clause (/ine 3)

14

neoqj

Example taken from
EDBT/ICDT 2018

Assume a graph G
containing doctors
who have potentially
been infected with a
virus....

@ EXPOSED_TO

g
o)
[%5]
g
3
&maasoaxa 6

ﬂeOL,j

Example query

The following Cypher query returns the name of each doctor in G who has perhaps been exposed to some

source of a viral infection, the number of exposures, and the number of people known (both directly and
indirectly) to their colleagues

: MATCH (d:Doctor)

: OPTIONAL MATCH (d)-[:EXPOSED_TO]->(v:ViralInfection)

: WITH d, count(v) AS exposures

: MATCH (d)-[:WORKED WITH]->(colleague:Person)

: OPTIONAL MATCH (colleague)<-[:KNOWS*]-(p:Person)

: RETURN d.name, exposures, count(DISTINCT p) AS thirdPartyCount

ok wWNERE

neoqj

Contrasting Languages: SQL vs. Cypher

(SELECT T.directReportees AS diractReportees, sum(T.count) AS count
FROM (

uuammwummoum

FROM _reportee manages

WHERE manager.pid = anmmmﬁm-'ﬂamml
UNION

SELECT manager.pid AS directReportees, count(manager.directly_manages) AS count
FROM person_reportee manager
WHERE manager.pid = (SELECT id FROM person WHERE name = “fName IName®)
GROUP BY directReportees
UNION

SELECT manager.pid AS directReportees, count(reportee.directly_manages) AS count
FROM person_reportee

ON manager.directly_manages = reportee.pid

WHERE manager.pid = (SELECT id FROM person WHERE name = "fName IName")
GROUP BY directReportees

UNION

SELECT manager.pid AS directReportees, count(L2Reportees.directly_manages) AS count

ON L1Reportees.directly_manages = L2Reportees.pid
WHERE manager.pid « (SELECT id FROM person WHERE name = “fName IName®)
GROUP BY directReportees.
JAST
‘GROUP BY directReportees)

UNION

(SELECT T.directReportees AS directReportees, sum(T.count) AS count

FROM (

SELECT manager.directly s wnmm\sm

FROM person_reportee man;

msww (suxcrmmmnwusx\tmm-'fmemm')

$EI-EC' reportee.pid AS directly_manages) AS count
FROM person_reportee manager

JOIN person_reportee reportee

ON manager.directly_manages = reportee.pid

WHERE manager.pid = (SELECT id FROM person WHERE name = “fName IName*)
GROUP BY directReportees

UNION

SELECT pid AS
count{depth2Reportees.directly_manages) AS count

FROM person_reportee

JOIN person_reportee L1Reportees

ON manager. directly_manages = L1Reportees.pid

JOIN person_reportee L2Reportees

ON L1Reportees.directly_manages = L2Reportees.pid

WHERE manager.pid = (SELECT id FROM person WHERE name = “fName IName®)
GROUP BY directReportees

JAST

GROUP BY directReportees)

UNION

(SELECT T directReportees AS directReportees, sum(T.count) AS count
FROM(
SELECT reportee. directly_manages AS directReportees, 0 AS count
FROM person_reportee manager
IOIN person_reportee reportee
ON manager directly_manages = reportee.pid
WHERE manager.pid = (SELECT id FROM person WHERE name = “fName IName")
GROUP BY directReportees
UNION

SELECT L2Reportees.pid AS directReportees, count{L2Reportees directly_manages)
AS count
FROM person_reportee manager
JOIN person_ repnrm L1Reportees
directly_manages =1 pid
JOIN person_reportee L2Reportees
ON L1Reportees.directly_manages = L2Reportees.pid
WHERE manager.pid = (SELECT id FROM person WHERE name = “fName IName”)
GROUP BY directReportees
JAST
GROUP BY directReportees)
UNION

(SELECT L directly_manages AS 0 AS count
FROM person_reportee manager
JOIN person_reportee L1Reportees

directly_manages = L2Reportees.pid
WHERE manager.pid = (SELECT id FROM person WHERE name = “fName IName")
)

MATCH (boss) - [:MANAGES*0..3]->(sub),
(sub) - [:MANAGES*1..3] -> (report)
WHERE boss.name = “John Doe”

RETURN gub.name AS Subordinate,
count (report) AS Total

neoz,j

Neo4j Cypher Query Engine

Query string

Result

-

Parsing

18

Semantic
Analysis

Some stages
skipped if in

query cache

Query Graph
Construction

[Statistics }

Logical
Planning

Physical
Planning

neOL,j

Evolving Cypher
through the
openCypher project

neoqj

20

openCypher

opencypher.org

Established in 2015

openCypher Implementers Group
(oCIG)

Evolve Cypher through an open
process

Comprises vendors, researchers,
implementers, interested parties

Language Artifacts

Cypher 9 reference
ANTLR and EBNF Grammars
Formal Semantics

Technology Compatibility Kit (TCK) -
Cucumber test suite

Style Guide

Implementations & Code
openCypher for Apache Spark

openCypher for Gremlin ®neoy

http://www.opencypher.org/
https://github.com/opencypher/openCypher
https://github.com/opencypher

TCK (Technology Compliance Kit)

Scenario: Optionally matching named paths
Given an empty graph Over 2K scenarios
And having executed:

CREATE (a {name: 'A'}), (b {name: 'B'}), (c {name: 'C'})
CREATE (a)-[:X]->(b)

When executing query:
MATCH (a {name: 'A'}), (x)
WHERE x.name IN ['B', 'C']
OPTIONAL MATCH p = (a)-->(x)
RETURN X, p

Then the result should be:

| x | p |
| ({name: 'B'}) | <({name: 'A'})-[:X]->({name: 'B'})> |
| ({name: 'C'}) | null

And no side effects neoqj

https://github.com/opencypher/openCypher/tree/master/tck

Introducing Graph
Query Language (GQL)

neoqj

GQL Manifesto

!‘j PeQL] E’@mﬁg

'CyPher,

-ReAD Only I -Crente -Reapn | CREATE -READ -
RPQs I-RPQs | _“\:Pg;T;s—DELETE
-No GRAPH | ~ GRAPA ConsTRUCT/ G

5 - (G RAPH CONSTRUCT/
Construe™ProsecT; Proveers PrRoOTECT:
. = ComposaBLE | - ComPOSABLE
T f——— - — I A
. PA r "
O e PGX | TmelementaTEONS | .Pﬁ?:;“,s 82‘;‘:. #Memay raphn
RACL } yeT «GAPHANA sinGroph
‘\.‘ = ol ' Ovaph eLyphnec.PL
/—! New FuseD

: L(ALE ATE~ Rend ‘UFDM"E'DE\.E;
-RPQs

-~ (GraPY LonsTrucT/PROTECT!

,‘ CoMPOSABIE ﬂeOLlj

ggl.today

http://gql.today

24

ISO GQL: A new standard Graph Query Language
(GQL) for Property Graphs

First International
Standard Database
Languages project since
SQL in 1987
Successful ballot: Sept
2019

« 7 countries volunteer
experts to define the
language

« Cypher query language
(openCypher) a major
input

Support for Property Graph
Queries in SOQL

To appear in the next version
of the SQL Standard
(ISO/IEC 9075-16)

Represent a virtual graph,
underpinned by a set of
tables

Query this graph using
pattern matching (syntax
and semantics shared with

GQL)

Optimistic release date (for
Intl. Standard): 2022

SQL/PGQ

Declarative Property Graph Language

GQL Standard (ISO/IEC 39075)
Undertaken in parallel with SQL/PGQ

Querying graphs (shared with SQL/PGQ) as
well as DML

Allow for multiple graphs and composable
querying in general - views, graph (& table)
projections & transformations

Graph schema

Complex data types

Optimistic release date for first version (for
Intl. Std): 2022

Future versions: streaming graphs, temporal
support etc

Extended by

- Create, Read, Update, Delete

ARQO P Acade d .
o - Complex path expressions
- Configurable match semantics
- Construct & project graphs
Extended by - Composable (views, ‘omnigraphs’)
Implementad i Academie = (S:a;alog
Ng® - Schema
eg d F-————————— | . 3 a
o | Readinggraphs | . =P
Querie tomm e 7 - - J Rea raphs
, 7 Complex Peth expressions
/
- Construct & project graphs /
- Composable /2 1-
1 i Complex path expressions | i

________________ -

Reading graphs

CRUD

Catalog
Construct & project
Composable

- Create, Rea®\Update, Delete (CRUD) I
! _\1| I it Named graphs
! Reading graphs \ I Catalog
"""""" \ Schema
| y Views/omifigraph
- Create, Read v Named graphs A
- Advanced complex path expressions N Complex path expressions
- Construct & project graphs ~ q
. - Composable Bl Tlgergraph
Academia
Regu lar Constructi & project graphs G S Q L
Queries Composable /

27

Proposed Extensions*

*Worked on under the auspices of the GQL
standardization process, and will make it into a future
version of openCypher as well as GQL

neoqj

Repetition of Path Patterns

(based on Conjunctive Regular Path Queries)

MATCH (start) [(pl:Person)-[:KNOWS]-(p2:Person)]+ (end)

‘end’ is bound to
this, same as last
instance of ‘p2’

‘start’ is bound to Bound to first instance 6:
thiS, Same as firSt of ‘pz’ and second Person

instance of ‘p1’ instance of ‘p1’

neoqj

29

Path Patterns: some extensions

Conjunction: A&B
Disjunction: A|B

Node and edge label expressions: e~ y
Grouping/nesting: (A&B) | C

MATCH (n:A&B)-[:!(C|D)]->(m:(E|F)&G)

Concatenation

Predicates on properties along a path: S
Alternation
MATCH (start) [(pl:Person)-[r:KNOWS]-(p2:Person) a|b -eitheraorb

Transitive closure

WHERE pl.age < p2.age AND r.since < date("2001-09-11"1* (end) *-0 or more

+ -1 or more
{m, n} - at least m, at most n

Bounded repetition: Optionality:
?2-0or1
Grouping/nestin
MATCH (me) [(:Person)-[:KNOWS]->(:Person)]{2,5} (you) O-gngwsnegﬁng@eﬂnesscope

MATCH (me) [(:Person)-[:KNOWS]->(:Person)]{5} (you)

“infinity”

0 @neoL]

MATCH (me) [(:Person)-[:KNOWS]->(:Person)]{2,} (you) //default upper bound

MATCH (me) [(:Person)-[:KNOWS]->(:Person)]{,5} (you) //default lower bound

Configurable pattern-matching semantics

NOde isomorphism Allow all three types of

matching
« No node occurs in a path more than once
« Most restrictive

All forms may be valid in

different scenarios

Edge isomorphism Can be configured at a

query level, or even at a

* No edge (relationship) occurs in a path more than once pattern level

* Proven in practice

Homomorphism

» A path can contain the same nodes and edges more than once
« Most efficient for some RPQs
* Leastrestrictive

30 neOL'j

Path pattern output modifiers

Controlling the path pattern-matching output semantics

ALL - returns all paths
[ALL] SHORTEST - for shortest path patterns of equal length (computed by number of edges).
ANY SHORTEST - any of the shortest possible paths.

Variations also include getting the k shortest paths or groups of paths
Some of these operations may be non-deterministic

neoqj

Data types

Sharing some data types
Scalar data types with SQL's type system

« Numeric, string, boolean, temporal etc

Collection data types

« Maps with arbitrary keys as well as maps with a fixed set of typed fields (anonymous
structs): {name: "GQL", type: "language", age: 0 }
« Ordered and unordered sequences with and without duplicates: [1, 2, 3]

Graph-related data types Support for

« Nodes and edges (with intrinsic identity) e Comparison and equality
Paths e Sorting and equivalence

32 « Graphs

Schema

“Classic” property graphs: historically schema-free/optional

« This is very useful in practice - retain the ability to be schema free
» Also provide the ability to have a schema in cases where this is needed

Moving towards a more comprehensive graph schema

+ Element types:
« Permitted set of labels and properties {name, data type} on a node or edge
« Future extension: permitted endpoint node types for an edge type

« Extended with unique key and cardinality constraints

33 neOL'j

34

Multlple graphs and graph prolectlon

——— o ——— ——— S

" BASEGRAPHde . P BASE GRAPH uk N

\ /

Image courtesy of Stefan Plantikow

Allowing for multiple named graphs
Allowing for graph projection:

« Sharing elements in the projected graph
« Deriving new elements in the projected graph ,
« Shared edges always point to the same (shared) endpoints in the projected graph neOAJ

Queries are composable procedures

« Use the output of one query as input to another to enable abstraction and views

« Applies to queries with tabular output and graph output

« Support for nested subqueries

« Extract parts of a query to a view for re-use

« Replace parts of a query without affecting other parts

* Build complex workflows programmatically

« Enables: application views; access control; derived graphs / reasoning; data integration; graph operations

35 27/ Image courtesy of Stefan Plantikow neOAJ

(Some) key papers in the story so far...

A graphical query language supporting recursion.
I. F. Cruz, A. O. Mendelzon, and P. T. Wood. 1987. Thisis a very small subset.

Research in this area spans
decades.

Declarative specification of web sites with STRUDEL.

M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. 2000.

Querying Graphs with Data.
L. Libkin, W. Martens, and D. Vrgoc. 2016.
PGQL: A Property Graph Query Language.
O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. 2016.
Regular Queries on Graph Databases.

J. L. Reutter, M. Romero, and M. Y. Vardi. 2017.

Cypher: An Evolving Query Language for Property Graphs.

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. 2018.

G-CORE: A Core for Future Graph Query Languages.

R. Angles, M. Arenas, P. Barcelo, P. Boncz, G. Fletcher, C. Gutierrez, T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, and H. Voigt. 2018.

Updating Graph Databases with Cypher

A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Schuster, P. Selmer, and H. Voigt. 2019. n e O L| J

https://homepages.inf.ed.ac.uk/pguaglia/papers/sigmod18.pdf
http://www.vldb.org/pvldb/vol12/p2242-green.pdf

Thank you!

Links:

e Neo4j Documentation: https://neo4j.com/docs/
Use cases: https://neo4j.com/use-cases/
Graph Databases (book available online at www.graphdatabases.com)

Getting started: http://neo4j.com/developer/get-started/

Online training: http://neo4j.com/graphacademy/
37 petra.se/mer@neo4j. com

openCypher: http://www.opencypher.org/

https://neo4j.com/docs/
https://neo4j.com/use-cases/
http://www.graphdatabases.com
http://neo4j.com/developer/get-started/
http://neo4j.com/graphacademy/
http://www.opencypher.org/

