
CS 520 Knowledge Graphs: 
Querying Property Graphs with 
[open]Cypher

Dr. Petra Selmer 
Team Lead, Query Languages Standards & Research Group @ Neo4j
petra.selmer@neo4j.com

April 8, 2021
1



• Recap of the Property Graph Data Model
• The Cypher query language
• Evolving Cypher through the openCypher project
• Introducing Graph Query Language (GQL)
• Proposed Extensions 

2

Talk outline



The property graph data 
model

3



Node
• Represents an entity within the 

graph
• Has zero or more labels
• Has zero or more properties 

• These may differ across nodes 
with the same label(s)

• Synonym: vertex

4

Property graph

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc


Relationship
• Adds structure to the graph 

• Provides semantic context for 
nodes

• Synonym: edge
• Has one type
• Has zero or more properties 

• These may differ across 
relationships with the same type

• Relates nodes by type and direction
• Must have a start and an end node

5

Property graph

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc


Property
• Name-value pair (map) that can 

go on nodes and edges
• Represents the data: e.g. name, 

age, weight etc
• String key; typed value (string, 

number, bool, list)

6

Property graph

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc


The Cypher query 
language

7



Declarative graph pattern matching language that adheres to modern paradigms 
and is intuitive

• Graph patterns are very easily expressed

• Recursive queries

• Variable-length relationship chains

• Returning paths

SQL-like syntax and features

• DQL for reads (focus of this talk)

• DML for updates

• DDL for creating constraints and indexes

8

Introducing Cypher
● Created by Neo4j (2010)
● openCypher (2015)



9

Patterns are everywhere Expressed using “ASCII Art”

MATCH (query)-[:MODELED_AS]->(drawing), 
 (code)-[:IMPLEMENTS]->(query), 
 (drawing)-[:TRANSLATED_TO]->(ascii_art), 
 (ascii_art)-[:IN_COMMENT_OF]->(code), 
 (drawing)-[:DRAWN_ON]->(whiteboard)

WHERE query.id = $query_id
RETURN code.source

Patterns are in 
● Matching
● Updates
● DDL



10

Searching for (matching) graph patterns



() or (n)

• Surround with parentheses
• Use an alias n to refer to our node later in 

the query

(n:Label)

• Specify a Label, starting with a colon :
• Used to group nodes by roles or types 

(similar to tags)

(n:Label {prop: ‘value’})

• Nodes can have properties11

Node and relationship patterns
--> or -[r:TYPE]->

• Wrapped in hyphens and square brackets
• A relationship type starts with a colon :

<>

• Specify the direction of the relationships

-[:KNOWS {since: 2010}]->

• Relationships can have properties



// Pattern description (ASCII art)
MATCH (me:Person)-[:FRIEND]->(friend)
// Filtering with predicates
WHERE me.name = ‘Frank Black’
AND   friend.age > me.age
// Projection of expressions
RETURN toUpper(friend.name) AS name, friend.title AS title
// Order results
ORDER BY name, title DESC

12

DQL: reading data Multiple patterns can be defined in a 
single match clause (i.e. conjunctive 
patterns):

MATCH (a)-(b)-(c), (b)-(f)

Input: a property graph
Output: a table



Variable-length relationship patterns
    
// Traverse 1 or more FRIEND relationships
MATCH (me)-[:FRIEND*]-(foaf)      

// Traverse 2 to 4 FRIEND relationships
MATCH (me)-[:FRIEND*2..4]-(foaf)   

// Traverse union of LIKES and KNOWS 1 or more times
MATCH (me)-[:LIKES|KNOWS*]-(foaf)  

Returning paths

// Path binding returns all paths (p) 
MATCH p = (a)-[:ONE]-()-[:TWO*]-()-[:THREE]-()
// Each path is a list containing the constituent nodes and relationships, in order
RETURN p 

// Variation: return all constituent nodes/relationships of the path
RETURN nodes(p) / relationships(p)

13

More complex Cypher patterns 



1: MATCH (me:Person {name: $name})-[:FRIEND]-(friend)
2: WITH me, count(friend) AS friends
3: MATCH (me)-[:ENEMY]-(enemy)
4: RETURN friends, count(enemy) AS enemies

WITH provides a horizon, allowing a query to be subdivided:
• Further matching can be done after a set of updates
• Expressions can be evaluated, along with aggregations 
• Essentially acts like the pipe operator in Unix

Linear composition
• Query processing begins at the top and progresses linearly to the end (top-down ordering)
• Each clause is a function taking in a table T (line 1) and returning a table T’ 
• T’ then acts as a driving table to the next clause (line 3)

14

Cypher: linear composition

Aggregation 
(grouped by ‘me’)

Parameters: $param

Reading and writing statements 
may be composed linearly in a 
single query



Assume a graph G 
containing doctors 
who have potentially 
been infected with a 
virus…. 

15

Example query: epidemic
Example taken from 
EDBT/ICDT 2018



The following Cypher query returns the name of each doctor in G who has perhaps been exposed to some 
source of a viral infection, the number of exposures, and the number of people known (both directly and 
indirectly) to their colleagues

1: MATCH (d:Doctor)
2: OPTIONAL MATCH (d)-[:EXPOSED_TO]->(v:ViralInfection) 
3: WITH d, count(v) AS exposures 
4: MATCH (d)-[:WORKED_WITH]->(colleague:Person) 
5: OPTIONAL MATCH (colleague)<-[:KNOWS*]-(p:Person) 
6: RETURN d.name, exposures, count(DISTINCT p) AS thirdPartyCount

16

Example query

+-------------------------------------------+

| d.name | exposures | thirdPartyCount      |

+-------------------------------------------+

| Bob    |  0        | 3 (Will, Chad, Carol)|

| Sue    |  2        | 1 (Carol)            |

+-------------------------------------------+



17

Contrasting Languages: SQL vs. Cypher

MATCH (boss)-[:MANAGES*0..3]->(sub),
      (sub)-[:MANAGES*1..3]->(report)
WHERE boss.name = “John Doe”
RETURN sub.name AS Subordinate, 
  count(report) AS Total



18

Neo4j Cypher Query Engine

Semantic
Analysis

Query Graph 
Construction

Logical 
Planning

Physical 
Planning

ParsingQuery string

Result Execution

Statistics

Some stages 
skipped if in 
query cache



Evolving Cypher 
through the 

openCypher project

19



openCypher

opencypher.org

Established in 2015

openCypher Implementers Group 
(oCIG)

Evolve Cypher through an open 
process

Comprises vendors, researchers, 
implementers, interested parties

Language Artifacts
Cypher 9 reference

ANTLR and EBNF Grammars

Formal Semantics 

Technology Compatibility Kit (TCK) - 
Cucumber test suite

Style Guide

Implementations & Code
openCypher for Apache Spark

openCypher for Gremlin
20

http://www.opencypher.org/
https://github.com/opencypher/openCypher
https://github.com/opencypher


TCK (Technology Compliance Kit)
  Scenario: Optionally matching named paths
    Given an empty graph
    And having executed:
      """
      CREATE (a {name: 'A'}), (b {name: 'B'}), (c {name: 'C'})
      CREATE (a)-[:X]->(b)
      """
    When executing query:
      """
      MATCH (a {name: 'A'}), (x)
      WHERE x.name IN ['B', 'C']
      OPTIONAL MATCH p = (a)-->(x)
      RETURN x, p
      """
    Then the result should be:
        | x                  | p                                   |
    | ({name: 'B'})      | <({name: 'A'})-[:X]->({name: 'B'})> |
    | ({name: 'C'})      | null                                |
    And no side effects

21

Over 2K scenarios

https://github.com/opencypher/openCypher/tree/master/tck


Introducing Graph 
Query Language (GQL)

22



23

GQL Manifesto

gql.today

http://gql.today


• First International 
Standard Database 
Languages project since 
SQL in 1987

• Successful ballot: Sept 
2019

• 7 countries volunteer 
experts to define the 
language

• Cypher query language 
(openCypher) a major 
input

24

ISO GQL: A new standard Graph Query Language 
(GQL) for Property Graphs



25

Support for Property Graph 
Queries in SQL

To appear in the next version 
of the SQL Standard
(ISO/IEC 9075-16)

Represent a virtual graph, 
underpinned by a set of 
tables

Query this graph using 
pattern matching (syntax 
and semantics shared with 
GQL)

Optimistic release date (for 
Intl. Standard): 2022

GQLSQL/PGQ

Declarative Property Graph Language

GQL Standard (ISO/IEC 39075)

Undertaken in parallel with SQL/PGQ

Querying graphs (shared with SQL/PGQ) as 
well as DML

Allow for multiple graphs and composable 
querying in general - views, graph (& table) 
projections & transformations

Graph schema

Complex data types

Optimistic release date for first version (for 
Intl. Std): 2022

Future versions: streaming graphs, temporal 
support etc



26

open
Cypher

Neo4j 
Cypher

Oracle
PGQL

LDBC
G-CORE

GQLSQL PGQ

- Construct & project graphs
- Composable

- Read only
- Path macro (complex path 
expressions)

- Create, Read, Update, Delete
- Complex path expressions
- Configurable match semantics
- Construct & project graphs
- Composable (views, ‘omnigraphs’)
- Catalog
- Schema

CRUD
Catalog
Construct & project
Composable
Views/omnigraph

Reading graphs

Reading graphs
Complex path expressions

Named graphs
Complex path expressions

Constructi & project graphs
Composable

Reading graphs

Reading graphs

Complex path expressions

- Create, Read, Update, Delete (CRUD) 

Academia
GXPath

W3C
XPath

Extended by

Academia
RPQs 

(Regular 
Path 

Queries)

Extended by

- RPQs with data tests (node & edge properties)

Academia
STRUQL

Academia
Regular 
Queries

- Create, Read
- Advanced complex path expressions
- Construct & project graphs
- Composable Tigergraph

GSQL

Named graphs
Catalog
Schema
Views/omingraph

SPARQL 
1.1

Implemented in



Proposed Extensions*

27

*Worked on under the auspices of the GQL 
standardization process, and will make it into a future 

version of openCypher as well as GQL 



MATCH (start) [(p1:Person)-[:KNOWS]-(p2:Person)]+ (end)

28

Repetition of Path Patterns 
(based on Conjunctive Regular Path Queries) 

1:
Person

2:
Person

3:
Person
&CEO

5:
Person

e20: 
KNOWS

e40: 
KNOWS

e10: 
KNOWS

4:
CEO

6:
Person

e30: 
KNOWS

e50: 
LIKES

‘start’ is bound to 
this, same as first 
instance of ‘p1’

‘end’ is bound to 
this, same as last 
instance of ‘p2’

Bound to first instance 
of ‘p2’ and second 
instance of ‘p1’



Node and edge label expressions:

MATCH (n:A&B)-[:!(C|D)]->(m:(E|F)&G)

Predicates on properties along a path:

MATCH (start) [ (p1:Person)-[r:KNOWS]-(p2:Person) 

WHERE p1.age < p2.age AND r.since < date("2001-09-11"]* (end)

Bounded repetition:

MATCH (me) [ (:Person)-[:KNOWS]->(:Person) ]{2,5} (you)

MATCH (me) [ (:Person)-[:KNOWS]->(:Person) ]{5} (you)

MATCH (me) [ (:Person)-[:KNOWS]->(:Person) ]{2,} (you) //default upper bound = “infinity”

MATCH (me) [ (:Person)-[:KNOWS]->(:Person) ]{,5} (you) //default lower bound = 029

Path Patterns: some extensions
Conjunction: A&B  
Disjunction:  A|B
Negation: !A 
Grouping/nesting: (A&B)|C

Concatenation
   a.b - a is followed by b
Alternation
   a|b - either a or b
Transitive closure
   * - 0 or more
   + - 1 or more
   {m, n} - at least m, at most n
Optionality:
   ? - 0 or 1
Grouping/nesting
   () - allows nesting/defines scope



Node isomorphism 
• No node occurs in a path more than once
• Most restrictive

Edge isomorphism 
• No edge (relationship) occurs in a path more than once
• Proven in practice

Homomorphism 
• A path can contain the same nodes and edges more than once
• Most efficient for some RPQs 
• Least restrictive 

30

Configurable pattern-matching semantics
Allow all three types of 
matching

All forms may be valid in 
different scenarios

Can be configured at a 
query level, or even at a 
pattern level



Controlling the path pattern-matching output semantics 

ALL   - returns all paths

[ALL] SHORTEST - for shortest path patterns of equal length (computed by number of edges).

ANY SHORTEST - any of the shortest possible paths. 

Variations also include getting the k shortest paths or groups of paths
Some of these operations may be non-deterministic

31

Path pattern output modifiers
Illustrative syntax only!



Scalar data types
• Numeric, string, boolean, temporal etc 

Collection data types
• Maps with arbitrary keys as well as maps with a fixed set of typed fields (anonymous 

structs): {name: "GQL", type: "language", age: 0 }
• Ordered and unordered sequences with and without duplicates: [1, 2, 3]

Graph-related data types
• Nodes and edges (with intrinsic identity)
• Paths
• Graphs 32

Data types
Sharing some data types 
with SQL’s type system

Support for
● Comparison and equality 
● Sorting and equivalence



“Classic” property graphs: historically schema-free/optional
• This is very useful in practice - retain the ability to be schema free
• Also provide the ability to have a schema in cases where this is needed

Moving towards a more comprehensive graph schema
• Element types: 

• Permitted set of labels and properties {name, data type} on a node or edge
• Future extension: permitted endpoint node types for an edge type

• Extended with unique key and cardinality constraints 

33

Schema



Allowing for multiple named graphs 

Allowing for graph projection:
• Sharing elements in the projected graph
• Deriving new elements in the projected graph
• Shared edges always point to the same (shared) endpoints in the projected graph34

Multiple graphs and graph projection 

Image courtesy of Stefan Plantikow



• Use the output of one query as input to another to enable abstraction and views
• Applies to queries with tabular output and graph output
• Support for nested subqueries
• Extract parts of a query to a view for re-use
• Replace parts of a query without affecting other parts
• Build complex workflows programmatically
• Enables: application views; access control; derived graphs / reasoning; data integration; graph operations

35

Queries are composable procedures

Image courtesy of Stefan Plantikow



A graphical query language supporting recursion. 
I. F. Cruz, A. O. Mendelzon, and P. T. Wood. 1987.

Declarative specification of web sites with STRUDEL. 
M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. 2000.

Querying Graphs with Data. 
L. Libkin, W. Martens, and D. Vrgoč. 2016.

PGQL: A Property Graph Query Language. 
O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. 2016.

Regular Queries on Graph Databases. 
J. L. Reutter, M. Romero, and M. Y. Vardi. 2017.

Cypher: An Evolving Query Language for Property Graphs. 
N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. 2018.

G-CORE: A Core for Future Graph Query Languages.
R. Angles, M. Arenas, P. Barcelo, P. Boncz, G. Fletcher, C. Gutierrez, T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, and H. Voigt. 2018.

Updating Graph Databases with Cypher
A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Schuster, P. Selmer, and H. Voigt. 2019.

36

(Some) key papers in the story so far...

This is a very small subset. 
Research in this area spans 
decades.

https://homepages.inf.ed.ac.uk/pguaglia/papers/sigmod18.pdf
http://www.vldb.org/pvldb/vol12/p2242-green.pdf


37

Thank you!

petra.selmer@neo4j.com

Links:
● Neo4j Documentation: https://neo4j.com/docs/
● Use cases: https://neo4j.com/use-cases/
● Graph Databases (book available online at www.graphdatabases.com)
● Getting started: http://neo4j.com/developer/get-started/
● Online training: http://neo4j.com/graphacademy/
● openCypher: http://www.opencypher.org/

https://neo4j.com/docs/
https://neo4j.com/use-cases/
http://www.graphdatabases.com
http://neo4j.com/developer/get-started/
http://neo4j.com/graphacademy/
http://www.opencypher.org/

