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Main question:

How do we take advantage of 
relational structure for better 

prediction?
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Complex domains have a rich relational 
structure, which can be represented as a

relational graph

By explicitly modeling relationships we 
achieve better performance!

5/6/21 Jiaxuan You, Stanford CS520: Introduction to Graph Neural Networks 4



5Jiaxuan You, Stanford CS520: Introduction to Graph Neural Networks

Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids
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Networks are complex.
¡ Arbitrary size and complex topological 

structure (i.e., no spatial locality like grids)
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vs.

Networks Images
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¡ Intuition: Map nodes to 𝑑-dimensional 
embeddings such that similar nodes in the 
graph are embedded close together 
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f (    )=
Input graph 2D node embeddings

How to learn mapping function 𝒇?
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Goal:

Need to define!

Input network d-dimensional 
embedding space

similarity 𝑢, 𝑣 ≈ 𝐳!"𝐳#



¡ Encoder: maps each node to a low-dimensional 
vector

¡ Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network
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Similarity of 𝑢 and 𝑣 in 
the original network

dot product between node 
embeddings
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Decoder

ENC 𝑣 = 𝐳!

similarity 𝑢, 𝑣 ≈ 𝐳!"𝐳#

node in the input graph

d-dimensional 
embedding



Simplest encoding approach: encoder is just an 
embedding-lookup
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Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node
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𝐙 =



¡ Edges in KG are represented as triplets (ℎ, 𝑟, 𝑡)
§ head (ℎ) has relation 𝑟 with tail (𝑡)

¡ Knowledge Graph embeddings
§ Shallow encoder: Model entities and relations in 

the embedding/vector space ℝ! via embedding 
lookup
§ Associate entities and relations with shallow embeddings

§ Similarity-based decoder: Given a true triple 
(ℎ, 𝑟, 𝑡), the goal is that the embedding of (ℎ, 𝑟)
should be close to the embedding of 𝑡.

5/6/21 Jiaxuan You, Stanford CS520: Introduction to Graph Neural Networks 11



¡ Translation Intuition: 
For a triple (ℎ, 𝑟, 𝑡), 𝐡, 𝐫, 𝐭 ∈ ℝ$ ,
𝐡 + 𝐫 ≈ 𝐭 if the given fact is true
else 𝐡 + 𝐫 ≠ 𝐭

Scoring function: 𝑓% ℎ, 𝑡 = −||𝐡 + 𝐫 − 𝐭||

5/6/21 Jiaxuan You, Stanford CS520: Introduction to Graph Neural Networks 12

𝐡 𝐭𝐫 Obama
Nationality American

Bordes, et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013.

https://hal.archives-ouvertes.fr/file/index/docid/920777/filename/bordes13nips.pdf


¡ Limitations of shallow embedding methods:
§ 𝑶(|𝑽|) parameters are needed: 

§ No sharing of parameters between nodes
§ Every node has its own unique embedding  

§ Inherently “transductive”: 
§ Cannot generate embeddings for nodes that are not seen 

during training

§ Do not incorporate node features:
§ Many graphs have features that we can and should 

leverage
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¡ Today: We will now discuss deep methods 
based on graph neural networks (GNNs):

¡ Note: All these deep encoders can be 
combined with node similarity functions 
defined in Knowledge Graph models
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multiple layers of 
non-linear transformations 
based on graph structure

ENC 𝑣 =
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…

Output: Node embeddings. 
Also, we can embed subgraphs, 
graphs
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¡ Assume we have a graph 𝑮:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ"×|%| is a matrix of node features
§ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene 

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]
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¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ 𝑂(|𝑉|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering
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End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]
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CNN on an image:
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Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)
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But our graphs look like this:
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End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding 
window on the graph

§ Graph is permutation invariant
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Single Convolutional neural network (CNN) layer 
with 3x3 filter:
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
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Idea: transform information at the neighbors and combine it:
§ Transform “messages” ℎ! from neighbors: 𝑊! ℎ!
§ Add them up: ∑!𝑊! ℎ!
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Determine node 
computation graph

Propagate and
transform information

𝑖 𝑖

[Kipf and Welling, ICLR 2017]



¡ Key idea: Generate node embeddings based 
on local network neighborhoods 
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¡ Intuition: Nodes aggregate information from 
their neighbors using neural networks
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Neural networks



¡ Intuition: Network neighborhood defines a 
computation graph
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Every node defines a computation 
graph based on its neighborhood!



¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑢 is its input feature, 𝑥𝑢
§ Layer-𝑘 embedding gets information from nodes that 

are K hops away
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¡ Basic approach: Average information from 
neighbors and apply a neural network
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(1) average messages 
from neighbors 

(2) apply neural network



¡ Basic approach: Average neighbor messages 
and apply a neural network
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Average of neighbor’s 
previous layer embeddings

Total number 
of layers

Initial 0-th layer embeddings are 
equal to node features

Embedding after L 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

embedding of 
𝑣 at layer 𝑙h&' = x&

z& = h&
())

h&
(+,-) = 𝜎(W+ ;

.∈0(&)

h.
(+)

N(𝑣)
+ B+h&

(+)), ∀𝑙 ∈ {0, … , 𝐿 − 1}



¡ GNN provides us node embedding 𝒛$
¡ Supervised setting: 
¡ we want to minimize the loss ℒ:

min
&
ℒ(𝒚, 𝑓 𝒛! )

§ 𝒚: node/egde/graph label (from external sources)
§ ℒ could be L2 if 𝒚 is real number, or cross entropy if 
𝒚 is categorical

¡ Unsupervised setting:
§ Use graph structure itself as supervision

§ E.g.: random walks, KG objective (TransE, RotatE, …)
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(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

𝒛'
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(3) Train on a set of nodes, i.e., 
a batch of computational graphs
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(4) Test time: Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!
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Tasks we will be able to solve:
¡ Node classification
§ Predict a type of a given node

¡ Link prediction
§ Predict whether two nodes are linked

¡ Community detection
§ Identify densely linked clusters of nodes

¡ Graph classification
§ Classify different graphs

37Jiaxuan You, Stanford CS520: Introduction to Graph Neural Networks5/6/21





A protein chain acquires its native 3D structure
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Image credit: DeepMind

https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery


Computationally predict a protein’s 3D structure 
based solely on its amino acid sequence
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Image credit: DeepMind

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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Image credit: DeepMind

¡ Key idea: “Spatial graph”
§ Nodes: Amino acids in a protein sequence
§ Edges: Proximity between amino acids in 3D

Spatial graph

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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Items

Users

¡ Users interacts with items
§ Watch movies, buy merchandise, listen to music
§ Nodes: Users and items
§ Edges: User-item interactions

¡ Goal: Recommend items users might like
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Interactions

“You might also like”



Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings 𝑧! such that
𝑑 𝑧"#$%&, 𝑧"#$%'
< 𝑑(𝑧"#$%&, 𝑧()%#*%+)

𝑧

Jiaxuan You, Stanford CS520: Introduction to Graph Neural Networks

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018
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https://arxiv.org/pdf/1806.01973.pdf




¡ a
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¡ Nodes: Road segments
¡ Edges: Connectivity between road segments
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


Predict via Graph Neural Networks

¡ Used in Google Maps
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks




¡ Antibiotics are small molecular graphs
§ Nodes: Atoms
§ Edges: Chemical bonds
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Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: 
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

https://www.cnn.com/2019/01/24/health/antibiotic-resistance-climate-change-gbr-scli-intl/index.html
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." 
Cell 180.4 (2020): 688-702.

¡ A graph classification task
¡ Predict promising molecules from a pool of existing 

candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

https://www.sciencedirect.com/science/article/pii/S0092867420301021


Graph generation: Generating novel molecules
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Use case 1: Generate novel molecules 
with high drug likeness

Use case 2: Optimize existing molecules to 
have desirable properties

You et al., Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation, NeurIPS 2018

https://arxiv.org/pdf/1806.02473.pdf


¡ Motivations for GNNs
§ Expressive and scalable

¡ What is a GNN
§ Key: A node neighborhood aggregation function
§ Define losses and training procedure

¡ Applications of GNNs
§ Different levels: Node, edge, subgraph, graph

¡ More materials:
§ Stanford CS224W

§ Course website: http://web.stanford.edu/class/cs224w/
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http://web.stanford.edu/class/cs224w/

