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Many Types of Data are Graphs
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Graphs: Machine Learning

Complex domains have a rich relational
structure, which can be represented as a
relational graph

By explicitly modeling relationships we
achieve better performance!
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Modern ML Toolbox
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Networks are complex.
Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

Text

Networks Images
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Node Embeddings

Intuition: Map nodes to d-dimensional
embeddings such that similar nodes in the
graph are embedded close together

Input graph 2D node embeddings

How to learn mapping function f?
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Node Embeddings

Goal: similarity(u,v) = zlz,

Need to definel!

Zu
/\\ ::Zv
\\ — /\ ““““““
pd o/
ENC(U)
d-dimensional

Input network |
embedding space
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Two Key Components

Encoder: maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph

specifies how the
relationships in vector space map to the
relationships in the original network

similarity(u,v) = zlz, Decoder
Similarity of u and v in dot product between node

the original network embeddings
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“Shallow” Encoding

Simplest encoding approach: encoder is just an
embedding-lookup

embedding vector for a

embedding specific node
matrix

\
7 —

Dimension/size
. of embeddings

‘9 /

~
one column per node
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KG: shallow encoder + similarity decoder

Edges in KG are represented as triplets (h,7,t)
head (h) has relation (r) with tail (t)

Knowledge Graph embeddings
Shallow encoder: Model entities and relations in

the embedding/vector space R? via embedding
lookup

Associate entities and relations with shallow embeddings

Similarity-based decoder: Given a true triple
(h,7,t), the goal is that the embedding of (h, 1)
should be close to the embedding of t.
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Bordes, et al.,

Example: TransE

Translation Intuition:
For a triple (h, 7, t), h,r, t € RY,
h + r = tif the given fact is true
elseh+r+#t
Scoring function: f.(h,t) = —||h + r — t||

Nationality American

h/t Obam@/‘@
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https://hal.archives-ouvertes.fr/file/index/docid/920777/filename/bordes13nips.pdf

Shallow Encoders: Limitations

Limitations of shallow embedding methods:
O(|V|) parameters are needed:

No sharing of parameters between nodes

Every node has its own unigue embedding

Inherently “transductive”:

Cannot generate embeddings for nodes that are not seen
during training

Do not incorporate node features:

Many graphs have features that we can and should
leverage
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Today: Deep Graph Encoders

5/6/21

Today: We will now discuss deep methods
based on graph neural networks (GNNs):

multiple layers of
ENC(v) =  non-linear transformations
based on graph structure

Note: All these deep encoders can be
combined with node similarity functions
defined in Knowledge Graph models

Jiaxuan You, Stanford CS520: Introduction to Graph Neural Networks



Deep Graph Encoders

Graph Regularization,
convolutions e.g., dropout
& &
& &
Activation Q Q

function Q

A,

y
'y

Graph
convolutions

Output: Node embeddings.
Also, we can embed subgraphs,

graphs
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Stanford CS520:
Graph Neural Networks



Setup

Assume we have a graph G:
V is the vertex set
A is the adjacency matrix (assume binary)

X € R™*IVl is a matrix of node features
v:anodeinV; N(v): the set of neighbors of v.

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information

When there is no node feature in the graph dataset:

Indicator vectors (one-hot encoding of a node)
Vector of constant 1: [1, 1, ..., 1]
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A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1  hidden layer 2 hidden layer 3

input layer
A B C D E Feat Q
( ) Q_ output layer
A o 1 1 1 O 1 0
@:
Blft o o1 1 o0 o0 -
Cl 10010 01 G u
G
D 11 1 0 1 1 1 c*
ELo 1010 1 0 o

Issues with this idea:

O(|V]) parameters
Not applicable to graphs of different sizes

Sensitive to node ordering
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ldea: Convolutional Networks

CNN on an image:

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)
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Real-World Graphs

But our graphs look like this:

° P or this: .

= There Is no fixed notion of locality or sliding
window on the graph

= Graph is permutation invariant
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From Images to Graphs

Single Convolutional neural network (CNN) layer
with 3x3 filter:

O
>
O

Image Graph

Idea: transform information at the neighbors and combine it:

Transform “messages” h; from neighbors: W; h;
Add them up: };; W; h;
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[Kipf and Welling, ICLR 2017]

Graph Convolutional Networks

Determine node Propagate and
computation graph transform information
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ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods
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ldea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
‘/ B «

INPUT GRAPH

Neural networks
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ldea: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
Every node defines a computation .
graph based on its neighborhood! /
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Deep Model: Many Layers

Model can be of arbitrary depth:

Nodes have embeddings at each layer

Layer-0 embedding of node u is its input feature, x,,
Layer-k embedding gets information from nodes that

are K hops away
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Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages

....... A

TARGET NODE from neighbors 04‘2‘12221 __________________ PS
l A

A o 4_.:,:“;‘_“'_’.':‘_‘.'.' ........ B
/ A : ................ . : ....... '

°-n
INPUOTGRAPH & T A

(2) apply neural network
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The Math: Deep Encoder

Basic approach: Average neighbor messages
and apply a neural network

embedding of

hY = x
v v / v at layer [

0
h!

h*D =lg(w, Bh?), vi € {0, ... JEl - 1

v 0-( |N(U)| )’ { ) ) }

UEN(v) \
=M i

Average of neighbor’s  Total number
previous layer embeddings = of |ayers

Non-linearity
(e.g., RelLU)
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How to train a GNN

GNN provides us node embedding z,,
Supervised setting:
we want to minimize the loss L:

min L(y, f (z,,))

y: node/egde/graph label (from external sources)

L could be L2 if y is real number, or cross entropy if
y is categorical
Unsupervised setting:

Use graph structure itself as supervision
E.g.: random walks, KG objective (TransE, RotatkE, ...)
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Model Design: Overview

(1) Define a neighborhood
aggregation function

ZAAd-

(2) Define a loss function on the
embeddings
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Model Design: Overview

(3) Train on a set of nodes, i.e.,
a batch of computational graphs

INPUT GRAPH
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Model Design: Overview

(4) Test time: Generate embeddings
/ for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH
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Stanford CS52o0:
Applications of GNNs



Tasks on Networks

Tasks we will be able to solve:
Node classification

Predict a type of a given node
Link prediction

Predict whether two nodes are linked
Community detection

ldentify densely linked clusters of nodes
Graph classification

Classify different graphs

5/6/21



Example of
Node-level ML Tasks



Example (1): Protein Folding

A protein chain acquires its native 3D structure

Every protein is made up These amino acids interact These shapes fold up on Proteins can interact with
of a sequence of amino locally to form shapes like larger scales to form the other proteins, performing
acids bonded together helices and sheets full three-dimensional functions such as signalling
protein structure and transcribing DNA
Amino Alpha Pleated Pleated Alpha
acids helix sheet sheet helix
DeepMind

5/6/21 Jiaxuan You, Stanford CS520: Introduction to Graph Neural Networks 39


https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery

The Protein Folding Problem

Computationally predict a protein’s
based solely on its amino acid

T1037 / 6vr4 T1049 / 6yaf
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

Experimental result

® Computational prediction
DeepMind

5/6/21 Jiaxuan You, Stanford CS520: Introduction to Graph Neural Networks
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https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

AlphaFold: Solving Protein Folding

Nodes: Amino acids in a protein sequence

“Spatial graph”

Edges: Proximity between amino acids in 3D

MSA embedding Sequence-residue edges

Genetics

search
& embed

Protein sequence

Embed &
outer sum
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Examples of
Edge-level ML Tasks




Example (2): Recommender Systems

Users interacts with items
Watch movies, buy merchandise, listen to music

Nodes: Users and items

Edges: User-item interactions
Goal: Recommend items users might like

Users @ '® @ @ @ Interactions
/

\\
2
s

—-—>

“You might also like”
Iltems
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Yingetal., , KDD 2018

PinSage: Graph-based Recommender

Task: Recommend related pins to users
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https://arxiv.org/pdf/1806.01973.pdf

Examples of
Subgraph-level ML Tasks



Example (3): Traffic Prediction
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Road Network as a Graph

Nodes: Road segments
Edges: Connectivity between road segments

5/6/21


https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Traffic Prediction via GNN

Predict via Graph Neural Networks

Predictions
Anonymised ; Supersegments ; Graph neural Google Maps

travel data Analysed Training network API
data
/N
%Surfaced
Used in Google Maps
N/

O

Google.Maps Candidate Google Maps
routing user routes aPD
system A-B

THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME. %M
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Examples of
Graph-level ML Tasks



Example (4): Drug Discovery

Antibiotics are small molecular graphs
Nodes: Atoms
Edges: Chemical bonds

ROCHN ROCHN ROCHN OCH3 S

COz CO2H COQH
penicillins cephalosporins cephamycins
ROCHN
I Yl FO T
COzH CoH CO,H
oxacephems clavulanic acid penems

(an oxapenem)

H

HO 5 RHN on RHN
R
N/ j;‘u j;lL\ )
o o o SOs
CO,H CO,H
carbapenems nocardicin monobactams
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https://www.cnn.com/2019/01/24/health/antibiotic-resistance-climate-change-gbr-scli-intl/index.html

Stokes et al.,

, Cell 2020

Deep Learning for Antibiotic Discovery

A graph classification task

Predict promising molecules from a pool of existing
candidates

Chemical landscape

Directed message arge scale predictions

1 A 4
passing neural network ( (upper limit 108 +) )
4 N\
/. 6 1

3 N ) 1‘3
» ]4 . N
, @ o 2
g4 S

Training set

Conventional small
molecule screening

4 Iterative Chemical screening
(10 molecules) model (upper limit 108 - 10°)
l re-training

|

Hit validation
(1 - 3% hit rate)

Machine learning

|

Predictions &
model validation

\

E Lead

5 /] identification
[antibiotic] & optimization

J . J
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https://www.sciencedirect.com/science/article/pii/S0092867420301021

You et al., , NeurlPS 2018

Molecule Generation / Optimization

Graph generation: Generating novel molecules

(1 NodelD &) n
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— Edge i d G u .® :> EdgeType update :> 0 e 0 Final reward
4;} Message Cg) Stop =©
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Node (d) Dynamics
embedding  (a) State — G, Scaffold — C (b) GCPN — mg(a:|G; U C) (c) Action — a; ~ g P(Gi41|Ge, ay) (e) State — G¢41 (f) Reward — 1,
Use case 1: Generate novel molecules Use case 2: Optimize existing molecules to
with high drug likeness have desirable properties
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https://arxiv.org/pdf/1806.02473.pdf

Expressive and scalable
What is a GNN

Key: A node neighborhood aggregation function

Define losses and training procedure
Applications of GNNs

Different levels: Node, edge, subgraph, graph

More materials:

Stanford CS224W
Course website: http://web.stanford.edu/class/cs224w/
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