
Eric Roberts Handout #24
CS 54N November 9, 2016

The Google PageRank Algorithm

The Google Page Rank Algorithm

Eric Roberts and Kelsey Schroeder
CS 54N

November 9, 2016

The Google Page Rank Algorithm

The PageRank Citation Ranking: �
Bringing Order to the Web �

January 29, 1998 �

Abstract �
 The importance of a Webpage is an inherently subjective matter, which depends on the
readers interests, knowledge and attitudes. But there is still much that can be said objectively
about the relative importance of Web pages. This paper describes PageRank, a method for
rating Web pages objectively and mechanically, effectively measuring the human interest and
attention devoted to them.�
 We compare PageRank to an idealized random Websurfer. We show how to efficiently
compute PageRank for large numbers of pages. And we show how to apply PageRank to search
and to user navigation. �

Google

Larry Page and Sergey Brin�

•� The big innovation of the late 1990s is
the development of search engines,
which began with Alta Vista at DEC’s
Western Research Lab and reached its
modern pinnacle with Google, founded
by Stanford graduate students Larry
Page and Sergey Brin in 1998.�

•� The heart of the Google search engine
is the PageRank algorithm, which was
described in the paper you read for
today’s class, written by Larry Page,
Sergey Brin, Rajeev Motwani (who
drowned in a tragic accident in 2009),
and Terry Winograd.�

The PageRank Algorithm
•� The PageRank algorithm gives each page a rating of its

importance, which is a recursively defined measure whereby a
page becomes important if important pages link to it. This
definition is recursive because the importance of a page refers
back to the importance of other pages that link to it.�

•� One way to think about PageRank is to imagine a random surfer
on the web, following links from page to page. The page rank
of any page is roughly the probability that the random surfer
will land on a particular page. Since more links go to the
important pages, the surfer is more likely to end up there.�

•� The behavior of the random surfer is an example of a Markov
process, which is any random evolutionary process that depends
only of the current state of a system and not on its history.�

Markov Processes
Google’s random surfer is an example of a Markov process, in
which a system moves from state to state, based on probability
information that shows the likelihood of moving from each state to
every other possible state.

0.85 0.10 0.05

0.60 0.25 0.15

0.40 0.40 0.20

If today is

Tomorrow will be

Markov Processes
What, then, is the likely weather two days from now, given that you
know what the weather looks like today?

0.85 0.10 0.05

0.60 0.25 0.15

0.40 0.40 0.20

If today is

0.81 0.13 0.06

0.72 0.18 0.10

0.66 0.22 0.12

The day after tomorrow will be

– 2 –

Markov Processes
What if you then repeat the process for ten days?

0.85 0.10 0.05

0.60 0.25 0.15

0.40 0.40 0.20

If today is

0.81 0.13 0.06

0.72 0.18 0.10

0.66 0.22 0.12

0.77 0.14 0.07

0.77 0.14 0.07

0.77 0.14 0.07

Ten days from now will be

Google’s PageRank Algorithm

The Page Rank Algorithm
Start with a set of pages. 1.

The Page Rank Algorithm
Crawl the web to determine the link structure. 2.

The Page Rank Algorithm

A� B

D

E�C

Assign each page an initial rank of 1 / N. 3.

0.2� 0.2�

0.2�

0.2�0.2�

0.2 0.2

0.2

0.2 0.2

The Page Rank Algorithm
Successively update the rank of each page by adding up the
weight of every page that links to it divided by the number
of links emanating from the referring page.

4.

D

E�C

0.2

0.2 0.2

•� In the current example, page E
has two incoming links, one
from page C and one from
page D.

•� Page C contributes 1/3 of its
current page rank to page E
because E is one of three links
from page C. Similarly, page
D offers 1/2 of its rank to E.

•� The new page rank for E is

PR(E) = � PR(C) � PR(D) �
3� 2�+� 0.2 �

3� +� 0.2 �
2�=� �� 0.17�

– 3 –

The Page Rank Algorithm
If a page (such as E in the current example) has no outward
links, redistribute its rank equally among the other pages in
the graph.

5.

D

E�C

0.2

0.2 0.2

•� In this graph, 1/4 of E’s page
rank is distributed to pages A,
B, C, and D.

•� The idea behind this model is
that users will keep searching
if they reach a dead end.

The Page Rank Algorithm

A� B

D

E�C

Apply this redistribution to every page in the graph. 7.

0.28 0.15

0.18

0.17 0.22

The Page Rank Algorithm

A� B

D

E�C

Repeat this process until the page ranks stabilize. 8.

0.26 0.17

0.17

0.16 0.23

The Page Rank Algorithm

A� B

D

E�C

In practice, the Page Rank algorithm adds a damping factor
at each stage to model the fact that users stop searching.

9.

0.25 0.17

0.18

0.17 0.22

PageRank as a Two-Player Game
•� One of the challenges for the designers of any search engine is

ensuring that a commercial interest can’t artificially increase its
ranking by creating many others pages whose only purpose is to
link to that company’s home page.�

•� Adopting the PageRank algorithm makes it harder for authors to
manipulate the system because the ranking of a page depends
on the prestige of important pages that are typically outside the
control of those who are seeking to game the system.�

•� Preventing users from manipulating their own web rankings is
an ongoing problem for all search engine companies. To help
ensure that the rankings remain fair, Google must keep the
details of the ranking algorithms secret and change them often
enough to outwit the would-be saboteurs.�

Exercise: Quoted Word Sequences
•� In the movie Enigma, Claire Romilly first meets Tom Jericho on

a train while she is solving a cryptic crossword. She muses
aloud about the clue—Roast mules go topsy-turvy—and Tom
provides the answer.�

•� When you enter a set of search terms, Google allows you to
search for a sequence of consecutive words by enclosing those
words in quotation marks. In this example, searching for roast
or mules is useless; searching for the quoted string "roast mules"
brings the answer up immediately.�

•� Given that indexing all pairs of words would be prohibitively
expensive in terms of storage, how can Google make this
feature work?�

•� Hint: In addition to the URLs of the pages on which a search
term appears, Google records the position on that page.�

