Outline

Graphs

Adjacency Matrix and Adjacency List
Special Graphs
Depth-First and Breadth-First Search
Topological Sort
Eulerian Circuit
Minimum Spanning Tree (MST)
Strongly Connected Components (SCC)
Graphs

- An abstract way of representing connectivity using nodes (also called vertices) and edges
- We will label the nodes from 1 to \(n \)
- \(m \) edges connect some pairs of nodes
 - Edges can be either one-directional (directed) or bidirectional
- Nodes and edges can have some auxiliary information

![Graph Diagram](https://via.placeholder.com/150)

Figure from Wikipedia
Why Study Graphs?

Lots of problems formulated and solved in terms of graphs
- Shortest path problems
- Network flow problems
- Matching problems
- 2-SAT problem
- Graph coloring problem
- Traveling Salesman Problem (TSP): *still unsolved!*
- and many more...
Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)
Storing Graphs

- Need to store both the set of nodes V and the set of edges E
 - Nodes can be stored in an array
 - Edges must be stored in some other way
- Want to support operations such as:
 - Retrieving all edges incident to a particular node
 - Testing if given two nodes are directly connected
- Use either adjacency matrix or adjacency list to store the edges
Adjacency Matrix

- An easy way to store connectivity information
 - Checking if two nodes are directly connected: $O(1)$ time
- Make an $n \times n$ matrix A
 - $a_{ij} = 1$ if there is an edge from i to j
 - $a_{ij} = 0$ otherwise
- Uses $\Theta(n^2)$ memory
 - Only use when n is less than a few thousands,
 - and when the graph is dense
Adjacency List

- Each node has a list of outgoing edges from it
 - Easy to iterate over edges incident to a certain node
 - The lists have variable lengths
 - Space usage: $\Theta(n + m)$
Implementing Adjacency List

Solution 1. Using linked lists
- Too much memory/time overhead
- Using dynamic allocated memory or pointers is bad

Solution 2. Using an array of vectors
- Easier to code, no bad memory issues
- But very slow

Solution 3. Using arrays (!)
- Assuming the total number of edges is known
- Very fast and memory-efficient
Implementation Using Arrays

Adjacency Matrix and Adjacency List

```
<table>
<thead>
<tr>
<th>ID</th>
<th>To</th>
<th>Next Edge ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>From</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Edge ID</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>
```
Implementation Using Arrays

- Have two arrays E of size m and LE of size n
 - E contains the edges
 - LE contains the starting pointers of the edge lists
- Initialize $LE[i] = -1$ for all i
 - $LE[i] = 0$ is also fine if the arrays are 1-indexed
- Inserting a new edge from u to v with ID k

 $E[k].to = v$

 $E[k].nextID = LE[u]$

 $LE[u] = k$

Adjacency Matrix and Adjacency List 11
Implementation Using Arrays

- Iterating over all edges starting at u:

  ```java
  for(ID = LE[u]; ID != -1; ID = E[ID].nextID)
  // E[ID] is an edge starting from u
  ```

- Once built, it’s hard to modify the edges
 - The graph better be static!
 - But adding more edges is easy
Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)
Tree

- A connected acyclic graph
- Most important type of special graphs
 - Many problems are easier to solve on trees
- Alternate equivalent definitions:
 - A connected graph with \(n - 1 \) edges
 - An acyclic graph with \(n - 1 \) edges
 - There is exactly one path between every pair of nodes
 - An acyclic graph but adding any edge results in a cycle
 - A connected graph but removing any edge disconnects it
Other Special Graphs

- Directed Acyclic Graph (DAG): the name says what it is
 - Equivalent to a partial ordering of nodes

- Bipartite Graph: Nodes can be separated into two groups S and T such that edges exist between S and T only (no edges within S or within T)
Outline

Graphs
Adjacency Matrix and Adjacency List
Special Graphs
Depth-First and Breadth-First Search
Topological Sort
Eulerian Circuit
Minimum Spanning Tree (MST)
Strongly Connected Components (SCC)

Depth-First and Breadth-First Search
Graph Traversal

- The most basic graph algorithm that visits nodes of a graph in certain order
- Used as a subroutine in many other algorithms

- We will cover two algorithms
 - Depth-First Search (DFS): uses recursion (stack)
 - Breadth-First Search (BFS): uses queue
Depth-First Search

DFS(v): visits all the nodes reachable from v in depth-first order

- Mark v as visited
- For each edge $v \rightarrow u$:
 - If u is not visited, call DFS(u)

- Use non-recursive version if recursion depth is too big (over a few thousands)
 - Replace recursive calls with a stack
Breadth-First Search

BFS\((v) \): visits all the nodes reachable from \(v \) in breadth-first order

- Initialize a queue \(Q \)
- Mark \(v \) as visited and push it to \(Q \)
- While \(Q \) is not empty:
 - Take the front element of \(Q \) and call it \(w \)
 - For each edge \(w \rightarrow u \):
 - If \(u \) is not visited, mark it as visited and push it to \(Q \)
Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)

Topological Sort
Topological Sort

- Input: a DAG $G = (V, E)$
- Output: an ordering of nodes such that for each edge $u \rightarrow v$, u comes before v
- There can be many answers
 - e.g., both $\{6, 1, 3, 2, 7, 4, 5, 8\}$ and $\{1, 6, 2, 3, 4, 5, 7, 8\}$ are valid orderings for the graph below
Topological Sort

- Any node without an incoming edge can be the first element
- After deciding the first node, remove outgoing edges from it
- Repeat!

- Time complexity: $O(n^2 + m)$
 - Too slow...
Topological Sort (faster version)

- Precompute the number of incoming edges \(\text{deg}(v) \) for each node \(v \)
- Put all nodes \(v \) with \(\text{deg}(v) = 0 \) into a queue \(Q \)
- Repeat until \(Q \) becomes empty:
 - Take \(v \) from \(Q \)
 - For each edge \(v \rightarrow u \):
 - Decrement \(\text{deg}(u) \) (essentially removing the edge \(v \rightarrow u \))
 - If \(\text{deg}(u) = 0 \), push \(u \) to \(Q \)
- Time complexity: \(\Theta(n + m) \)
Outline

Graphs
Adjacency Matrix and Adjacency List
Special Graphs
Depth-First and Breadth-First Search
Topological Sort
Eulerian Circuit
Minimum Spanning Tree (MST)
Strongly Connected Components (SCC)
Given an undirected graph G

Want to find a sequence of nodes that visits every edge exactly once and comes back to the starting point

Eulerian circuits exist if and only if

- G is connected
- G and each node has an even degree
Constructive Proof of Existence

- Pick any node in G and walk randomly without using the same edge more than once
- Each node is of even degree, so when you enter a node, there will be an unused edge you exit through
 - Except at the starting point, at which you can get stuck
- When you get stuck, what you have is a cycle
 - Remove the cycle and repeat the process in each connected component
 - Glue the cycles together to finish!
Related Problems

- Eulerian path: exists if and only if the graph is connected and the number of nodes with odd degree is 0 or 2.

- Hamiltonian path/cycle: a path/cycle that visits every node in the graph exactly once. Looks similar but very hard (still unsolved)!
Outline

Graphs

Adjacency Matrix and Adjacency List

Special Graphs

Depth-First and Breadth-First Search

Topological Sort

Eulerian Circuit

Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)
Minimum Spanning Tree (MST)

Given an undirected weighted graph $G = (V, E)$

Want to find a subset of E with the minimum total weight that connects all the nodes into a tree

We will cover two algorithms:

- Kruskal’s algorithm
- Prim’s algorithm
Kruskal’s Algorithm

- Main idea: the edge e^* with the smallest weight has to be in the MST
- Simple proof:
 - Assume not. Take the MST T that doesn’t contain e^*.
 - Add e^* to T, which results in a cycle.
 - Remove the edge with the highest weight from the cycle.
 - The removed edge cannot be e^* since it has the smallest weight.
 - Now we have a better spanning tree than T
 - Contradiction!
Another main idea: after an edge is chosen, the two nodes at the ends can be merged and considered as a single node (supernode)

Pseudocode:
- Sort the edges in increasing order of weight
- Repeat until there is one supernode left:
 - Take the minimum weight edge e^*
 - If e^* connects two different supernodes, then connect them and merge the supernodes (use union-find)
 - Otherwise, ignore e^* and try the next edge
Prim’s Algorithm

Main idea:
- Maintain a set S that starts out with a single node s
- Find the smallest weighted edge $e^* = (u, v)$ that connects $u \in S$ and $v \notin S$
- Add e^* to the MST, add v to S
- Repeat until $S = V$

Differs from Kruskal’s in that we grow a single supernode S instead of growing multiple ones at the same time
Prim’s Algorithm Pseudocode

- Initialize $S := \{s\}$, $D_v := \text{cost}(s, v)$ for every v
 - If there is no edge between s and v, $\text{cost}(s, v) = \infty$
- Repeat until $S = V$:
 - Find $v \notin S$ with smallest D_v
 - Use a priority queue or a simple linear search
 - Add v to S, add D_v to the total weight of the MST
 - For each edge (v, w):
 - Update $D_w := \min(D_w, \text{cost}(v, w))$
- Can be modified to compute the actual MST along with the total weight
Kruskal’s vs Prim’s

- **Kruskal’s Algorithm**
 - Takes $O(m \log m)$ time
 - Pretty easy to code
 - Generally slower than Prim’s

- **Prim’s Algorithm**
 - Time complexity depends on the implementation:
 - Can be $O(n^2 + m)$, $O(m \log n)$, or $O(m + n \log n)$
 - A bit trickier to code
 - Generally faster than Kruskal’s
Outline

Graphs
Adjacency Matrix and Adjacency List
Special Graphs
Depth-First and Breadth-First Search
Topological Sort
Eulerian Circuit
Minimum Spanning Tree (MST)

Strongly Connected Components (SCC)
Strongly Connected Components (SCC)

- Given a directed graph $G = (V, E)$
- A graph is strongly connected if all nodes are reachable from every single node in V
- Strongly connected components of G are maximal strongly connected subgraphs of G
- The graph below has 3 SCCs: \{a, b, e\}, \{c, d, h\}, \{f, g\}
Kosaraju’s Algorithm

- Initialize counter $c := 0$
- While not all nodes are labeled:
 - Choose an arbitrary unlabeled node v
 - Start DFS from v
 - Check the current node x as visited
 - Recurse on all unvisited neighbors
 - After the DFS calls are finished, increment c and set the label of x as c
- Reverse the direction of all the edges
- For node v with label $n, n - 1, \ldots, 1$:
 - Find all reachable nodes from v and group them as an SCC
Kosaraju’s Algorithm

- We won’t prove why this works
- Two graph traversals are performed
 - Running time: $\Theta(n + m)$

- Other SCC algorithms exist but this one is particularly easy to code
 - and asymptotically optimal