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Cross Product

◮ Arguably the most important operation in 2D geometry

◮ We’ll use it all the time

◮ Applications:

– Determining the (signed) area of a triangle
– Testing if three points are collinear
– Determining the orientation of three points
– Testing if two line segments intersect
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Cross Product

Define ccw(A, B, C) = (B − A) × (C − A) =
(bx − ax)(cy − ay) − (by − ay)(cx − ax)
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Segment-Segment Intersection Test

◮ Given two segments AB and CD

◮ Want to determine if they intersect properly: two segments
meet at a single point that are strictly inside both segments
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Segment-Segment Intersection Test

◮ Assume that the segments intersect

– From A’s point of view, looking straight to B, C and D must
lie on different sides

– Holds true for the other segment as well

◮ The intersection exists and is proper if:

– ccw(A, B, C) × ccw(A, B, D) < 0
– and ccw(C, D, A) × ccw(C, D, B) < 0

Cross Product 6



Non-proper Intersections

◮ We need more special cases to consider!

◮ e.g., If ccw(A, B, C), ccw(A, B, D), ccw(C, D, A),
ccw(C, D, B) are all zeros, then two segments are collinear

◮ Very careful implementation is required
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Convex Hull Problem

◮ Given n points on the plane, find the smallest convex polygon
that contains all the given points

– For simplicity, assume that no three points are collinear
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Simple Algorithm

◮ AB is an edge of the convex hull iff ccw(A, B, C) have the
same sign for all other points C

– This gives us a simple algorithm

◮ For each A and B:
– If ccw(A, B, C) > 0 for all C 6= A, B:

◮ Record the edge A → B

◮ Walk along the recorded edges to recover the convex hull
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Faster Algorithm: Graham Scan

◮ We know that the leftmost given point has to be in the
convex hull

– We assume that there is a unique leftmost point

◮ Make the leftmost point the origin

– So that all other points have positive x coordinates

◮ Sort the points in increasing order of y/x

– Increasing order of angle, whatever you like to call it

◮ Incrementally construct the convex hull using a stack
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Incremental Construction

◮ We maintain a convex chain of the given points

◮ For each i, do the following:

– Append point i to the current chain
– If the new point causes a concave corner, remove the bad

vertex from the chain that causes it
– Repeat until the new chain becomes convex
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Example

Points are numbered in increasing order of y/x
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Example

Add the first two points in the chain
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Example

Adding point 3 causes a concave corner 1-2-3: remove 2
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Example

That’s better...
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Example

Adding point 4 to the chain causes a problem: remove 3
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Example

Continue adding points...
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Example

Continue adding points...
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Example

Continue adding points...
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Example

Bad corner!
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Example

Bad corner again!
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Example

Continue adding points...
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Example

Continue adding points...
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Example

Continue adding points...
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Example

Done!
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Pseudocode

◮ Set the leftmost point as (0, 0), and sort the rest of the points
in increasing order of y/x

◮ Initialize stack S

◮ For i = 1, . . . , n:

– Let A be the second topmost element of S, B be the topmost
element of S, and C be the ith point

– If ccw(A, B, C) < 0, pop S and go back
– Push C to S

◮ Points in S form the convex hull
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Sweep Line Algorithm

◮ A problem solving strategy for geometry problems

◮ The main idea is to maintain a line (with some auxiliary data
structure) that sweeps through the entire plane and solve the
problem locally

◮ We can’t simulate a continuous process, (e.g. sweeping a line)
so we define events that causes certain changes in our data
structure

– And process the events in the order of occurrence

◮ We’ll cover one sweep line algorithm
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Sweep Line Algorithm

◮ Problem: Given n axis-aligned rectangles, find the area of the
union of them

◮ We will sweep the plane from left to right

◮ Events: left and right edges of the rectangles

◮ The main idea is to maintain the set of “active” rectangles in
order

– It suffices to store the y-coordinates of the rectangles
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Example
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Example

Sweep Line Algorithm 32



Example
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Example
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Example
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Example
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Example
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Example
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Example

Sweep Line Algorithm 40



Example
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Pseudo-pseudocode

◮ If the sweep line hits the left edge of a rectangle

– Insert it to the data structure

◮ Right edge?

– Remove it

◮ Move to the next event, and add the area(s) of the green
rectangle(s)

– Finding the length of the union of the blue segments is the
hardest step

– There is an easy O(n) method for this step
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Notes on Sweep Line Algorithms

◮ Sweep line algorithm is a generic concept

– Come up with the right set of events and data structures for
each problem

◮ Exercise problems

– Finding the perimeter of the union of rectangles
– Finding all k intersections of n line segments in

O((n + k) log n) time
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Intersecting Half-planes

◮ Representing a half-plane: ax + by + c ≤ 0

◮ The intersection of half-planes is a convex area

– If the intersection is bounded, it gives a convex polygon

◮ Given n half-planes, how do we compute the intersection of
them?

– i.e., Find vertices of the convex area

◮ There is an easy O(n3) algorithm and a hard O(n log n) one

– We will cover the easy one
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Intersecting Half-planes

◮ For each half-plane aix + biy + ci ≤ 0, define a straight line
ei : aix + biy + ci = 0

◮ For each pair of ei and ej :

– Compute their intersection p = (px, py)
– Check if akpx + bkpy + ck ≤ 0 for all half-planes

◮ If so, store p in some array P
◮ Otherwise, discard p

◮ Find the convex hull of the points in P

Intersecting Half-planes 46



Intersecting Half-planes

◮ The intersection of half-planes can be unbounded

– But usually, we are given limits on the min/max values of the
coordinates

– Add four half-planes x ≥ −M , x ≤ M , y ≥ −M , y ≤ M (for
large M) to ensure that the intersection is bounded

◮ Time complexity: O(n3)

– Pretty slow, but easy to code
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Notes on Binary Search

◮ Usually, binary search is used to find an item ofi rulnterest in a
sorted array

◮ There is a nice application of binary search, often used in
geometry problems

– Example: finding the largest circle that fits into a given
polygon

◮ Don’t try to find a closed form solution or anything like that!
◮ Instead, binary search on the answer
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Ternary Search

◮ Another useful method in many geometry problems

◮ Finds the minimum point of a “convex” function f

– Not exactly convex, but let’s use this word anyway

◮ Initialize the search interval [s, e]

◮ Until e − s becomes “small enough”:

– m1 := s + (e − s)/3, m2 := e − (e − s)/3
– If f(m1) ≤ f(m2), set e := m2

– Otherwise, set s := m1
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