Shortest Path Algorithms

Jaehyun Park

CS 97SI Stanford University

June 29, 2015

Outline

Cross Product

Convex Hull Problem

Sweep Line Algorithm

Intersecting Half-planes

Notes on Binary/Ternary Search

Cross Product

- Arguably the most important operation in 2D geometry
- We'll use it all the time

- Applications:
 - Determining the (signed) area of a triangle
 - Testing if three points are collinear
 - Determining the orientation of three points
 - Testing if two line segments intersect

Cross Product

Define
$$ccw(A, B, C) = (B - A) \times (C - A) = (b_x - a_x)(c_y - a_y) - (b_y - a_y)(c_x - a_x)$$

Segment-Segment Intersection Test

- ightharpoonup Given two segments AB and CD
- ▶ Want to determine if they intersect properly: two segments meet at a single point that are strictly inside both segments

Segment-Segment Intersection Test

- Assume that the segments intersect
 - From A's point of view, looking straight to $B,\,C$ and D must lie on different sides
 - Holds true for the other segment as well
- ▶ The intersection exists and is proper if:
 - $-\operatorname{ccw}(A, B, C) \times \operatorname{ccw}(A, B, D) < 0$
 - and $ccw(C, D, A) \times ccw(C, D, B) < 0$

Non-proper Intersections

- ▶ We need more special cases to consider!
- ▶ e.g., If ccw(A, B, C), ccw(A, B, D), ccw(C, D, A), ccw(C, D, B) are all zeros, then two segments are collinear

Very careful implementation is required

Outline

Cross Product

Convex Hull Problem

Sweep Line Algorithm

Intersecting Half-planes

Notes on Binary/Ternary Search

Convex Hull Problem

- ► Given *n* points on the plane, find the smallest convex polygon that contains all the given points
 - For simplicity, assume that no three points are collinear

Simple Algorithm

- ▶ AB is an edge of the convex hull iff ccw(A, B, C) have the same sign for all other points C
 - This gives us a simple algorithm

- ► For each A and B:
 - If ccw(A, B, C) > 0 for all $C \neq A, B$:
 - ▶ Record the edge $A \rightarrow B$
- Walk along the recorded edges to recover the convex hull

Faster Algorithm: Graham Scan

- We know that the leftmost given point has to be in the convex hull
 - We assume that there is a unique leftmost point
- Make the leftmost point the origin
 - So that all other points have positive x coordinates
- ▶ Sort the points in increasing order of y/x
 - Increasing order of angle, whatever you like to call it
- Incrementally construct the convex hull using a stack

Incremental Construction

- ▶ We maintain a *convex chain* of the given points
- ► For each *i*, do the following:
 - Append point i to the current chain
 - If the new point causes a concave corner, remove the bad vertex from the chain that causes it
 - Repeat until the new chain becomes convex

Points are numbered in increasing order of y/x

Add the first two points in the chain

Adding point 3 causes a concave corner 1-2-3: remove 2

That's better...

Adding point 4 to the chain causes a problem: remove 3

Bad corner!

Bad corner again!

Done!

Pseudocode

- \blacktriangleright Set the leftmost point as (0,0), and sort the rest of the points in increasing order of y/x
- ▶ Initialize stack S
- ▶ For i = 1, ..., n:
 - Let A be the second topmost element of S, B be the topmost element of S, and C be the ith point
 - If ccw(A, B, C) < 0, pop S and go back
 - Push C to S
- ▶ Points in S form the convex hull

Outline

Cross Product

Convex Hull Problem

Sweep Line Algorithm

Intersecting Half-planes

Notes on Binary/Ternary Search

Sweep Line Algorithm

- A problem solving strategy for geometry problems
- The main idea is to maintain a line (with some auxiliary data structure) that sweeps through the entire plane and solve the problem locally
- We can't simulate a continuous process, (e.g. sweeping a line) so we define events that causes certain changes in our data structure
 - And process the events in the order of occurrence
- We'll cover one sweep line algorithm

Sweep Line Algorithm

- ightharpoonup Problem: Given n axis-aligned rectangles, find the area of the union of them
- We will sweep the plane from left to right
- Events: left and right edges of the rectangles
- ► The main idea is to maintain the set of "active" rectangles in order
 - It suffices to store the y-coordinates of the rectangles

Pseudo-pseudocode

- ▶ If the sweep line hits the left edge of a rectangle
 - Insert it to the data structure
- Right edge?
 - Remove it
- Move to the next event, and add the area(s) of the green rectangle(s)
 - Finding the length of the union of the blue segments is the hardest step
 - There is an easy O(n) method for this step

Notes on Sweep Line Algorithms

- Sweep line algorithm is a generic concept
 - Come up with the right set of events and data structures for each problem
- Exercise problems
 - Finding the perimeter of the union of rectangles
 - Finding all k intersections of n line segments in $O((n+k)\log n)$ time

Outline

Cross Product

Convex Hull Problem

Sweep Line Algorithm

Intersecting Half-planes

Notes on Binary/Ternary Search

Intersecting Half-planes

- ▶ Representing a half-plane: $ax + by + c \le 0$
- ▶ The intersection of half-planes is a convex area
 - If the intersection is bounded, it gives a convex polygon
- ▶ Given n half-planes, how do we compute the intersection of them?
 - i.e., Find vertices of the convex area
- ▶ There is an easy $O(n^3)$ algorithm and a hard $O(n \log n)$ one
 - We will cover the easy one

Intersecting Half-planes

- ▶ For each half-plane $a_i x + b_i y + c_i \le 0$, define a straight line $e_i : a_i x + b_i y + c_i = 0$
- ▶ For each pair of e_i and e_j :
 - Compute their intersection $p = (p_x, p_y)$
 - Check if $a_k p_x + b_k p_y + c_k \le 0$ for all half-planes
 - If so, store p in some array P
 - Otherwise, discard p
- Find the convex hull of the points in P

Intersecting Half-planes

- ▶ The intersection of half-planes can be unbounded
 - But usually, we are given limits on the min/max values of the coordinates
 - Add four half-planes $x \ge -M$, $x \le M$, $y \ge -M$, $y \le M$ (for large M) to ensure that the intersection is bounded
- ▶ Time complexity: $O(n^3)$
 - Pretty slow, but easy to code

Outline

Cross Product

Convex Hull Problem

Sweep Line Algorithm

Intersecting Half-planes

Notes on Binary/Ternary Search

Notes on Binary Search

 Usually, binary search is used to find an item ofi rulnterest in a sorted array

- ► There is a nice application of binary search, often used in geometry problems
 - Example: finding the largest circle that fits into a given polygon
 - Don't try to find a closed form solution or anything like that!
 - Instead, binary search on the answer

Ternary Search

- Another useful method in many geometry problems
- ► Finds the minimum point of a "convex" function *f*
 - Not exactly convex, but let's use this word anyway
- Initialize the search interval [s,e]
- ▶ Until e s becomes "small enough":
 - $-m_1 := s + (e-s)/3, m_2 := e (e-s)/3$
 - If $f(m_1) \leq f(m_2)$, set $e := m_2$
 - Otherwise, set $s := m_1$