
Lecture 8
Textual Data: Bag-of-Words and N-Grams

Dennis Sun
Stanford University

DATASCI 112

January 26, 2024

1



1 Textual Data

2 Bag-of-Words Model

3 N-Grams

2



Roadmap for Today

Many data science techniques assume that all the variables are
quantitative.

• Example: measuring similarity / calculating distances
between observations

Last time, we learned how to convert categorical variables to
quantitative variables.

Today, we will learn how to convert a completely new type of
data to quantitative variables.

3



1 Textual Data

2 Bag-of-Words Model

3 N-Grams

4



Textual Data
A textual data set consists of multiple texts. Each text is called a
document. The collection of texts is called a corpus.

Example Corpus:
0 "I am Sam\n\nI am Sam\nSam I..."
1 "The sun did not shine.\nIt was..."
2 "Fox\nSocks\nBox\nKnox\n\nKnox..."
3 "Every Who\nDown in Whoville\n..."

4 "UP PUP Pup is up.\nCUP PUP..."

5 "On the fifteenth of May, in the..."

6 "Congratulations!\nToday is your..."

7 "One fish, two fish, red fish..."

−→

? ? ?

0 1 0 2 ...
1 0 1 0 ...
2 3 0 0 ...
3 0 2 1 ...
4 0 0 1 ...
5 2 0 5 ...
6 0 0 0 ...
7 0 2 0 ...

Goal: Turn this corpus into a matrix of numbers.

But what does each column represent?!

5



Reading in Textual Data

Documents are usually stored in different files.

seuss_dir = "http://dlsun.github.io/pods/data/drseuss/"
seuss_files = [

"green_eggs_and_ham.txt", "cat_in_the_hat.txt",
"fox_in_socks.txt", "how_the_grinch_stole_christmas.txt",
"hop_on_pop.txt", "horton_hears_a_who.txt",
"oh_the_places_youll_go.txt", "one_fish_two_fish.txt"]

We have to read them in one by one.

import requests

docs = {}
for filename in seuss_files:

response = requests.get(seuss_dir + filename, "r")
docs[filename] = response.text

6



Textual Data
A textual data set consists of several texts. Each text is called a
document. The collection of texts is called a corpus.

Example Corpus:
0 "I am Sam\n\nI am Sam\nSam I..."
1 "The sun did not shine.\nIt was..."
2 "Fox\nSocks\nBox\nKnox\n\nKnox..."
3 "Every Who\nDown in Whoville\n..."

4 "UP PUP Pup is up.\nCUP PUP..."

5 "On the fifteenth of May, in the..."

6 "Congratulations!\nToday is your..."

7 "One fish, two fish, red fish..."

−→

? ? ?

0 1 0 2 ...
1 0 1 0 ...
2 3 0 0 ...
3 0 2 1 ...
4 0 0 1 ...
5 2 0 5 ...
6 0 0 0 ...
7 0 2 0 ...

Goal: Turn this corpus into a matrix of numbers.
But what would each column represent?!

7



1 Textual Data

2 Bag-of-Words Model

3 N-Grams

8



Bag-of-Words Model
In the bag-of-words model, each column represents a word, and
the values in the column are the word counts.
First, we need to count the words in each document.
from collections import Counter
Counter(docs["hop_on_pop.txt"].split())
Counter({'UP': 1, 'PUP': 3, 'Pup': 4, 'is': 10, 'up.': 2, ...})

We put these counts into a Series and stack them into a DataFrame.
import pandas as pd
pd.DataFrame(

[pd.Series(Counter(doc.split())) for doc in docs.values()],
index=docs.keys())

To get rid of the

NaNs, add .fillna(0).

This is called the term-
frequency matrix.

9



Bag-of-Words in Scikit-Learn
Alternatively, we can use CountVectorizer in scikit-learn to
produce a term-frequency matrix.
from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer()
vec.fit(docs.values())
vec.transform(docs.values())

<8x1344 sparse matrix of type '<class 'numpy.int64'>'
with 2308 stored elements in Compressed Sparse Row format>

Wait! Why are there only 1344 words?

The set of words across a corpus is called the vocabulary. We can view
the vocabulary in a fitted CountVectorizer as follows:

vec.vocabulary_

{'am': 23, 'sam': 935, 'that': 1138, 'do': 287, 'not': 767, ...}

The number here represents the column index in the matrix!

(So column 23 contains the counts for "am", etc.)

10



Text Normalization
What’s wrong with the way we counted words originally?
Counter({'UP': 1, 'PUP': 3, 'Pup': 4, 'is': 10, 'up.': 2, ...})

It’s usually good to normalize for punctuation and capitalization.

Normalization options are specified when you initialize the
CountVectorizer. By default, Scikit-Learn strips punctuation and
converts all characters to lowercase.

But if you don’t want Scikit-Learn to normalize for punctuation
and capitalization, you can do the following:
vec = CountVectorizer(lowercase=False, token_pattern=r"[\S]+")
vec.fit(docs.values())
vec.transform(docs.values())

<8x2562 sparse matrix of type '<class 'numpy.int64'>'
with 3679 stored elements in Compressed Sparse Row format>

Now we’re back to 2562 words in the vocabulary!

11



1 Textual Data

2 Bag-of-Words Model

3 N-Grams

12



The Shortcomings of Bag-of-Words
Bag-of-words is easy to understand and easy to implement.

What are its disadvantages?

Consider the following documents:
1 “The dog bit her owner.”
2 “Her dog bit the owner.”

Both documents have the same exact bag-of-words
representation:

the her dog owner bit
1 1 1 1 1 1
2 1 1 1 1 1

But they mean something quite different!

13



N-grams
An n-gram is a sequence of n words.

N-grams allow us to capture more of the meaning.

For example, if we count bigrams (2-grams) instead of words, we
can distinguish the two documents from before:

1 “The dog bit her owner.”
2 “Her dog bit the owner.”

the,dog her,dog dog,bit bit,the bit,her the,owner her,owner
1 1 0 1 0 1 0 1
2 0 1 1 1 0 1 0

14

https://books.google.com/ngrams/


N-grams in Scikit-Learn
Scikit-Learn can create n-grams.

Just pass in ngram_range= to the CountVectorizer. To get bigrams,
we set the range to (2, 2):
vec = CountVectorizer(ngram_range=(2, 2))
vec.fit(docs.values())
vec.transform(docs.values())

<8x5846 sparse matrix of type '<class 'numpy.int64'>'
with 6459 stored elements in Compressed Sparse Row format>

We can also get individual words (unigrams) alongside the
bigrams:
vec = CountVectorizer(ngram_range=(1, 2))
vec.fit(docs.values())
vec.transform(docs.values())

<8x7190 sparse matrix of type '<class 'numpy.int64'>'
with 8767 stored elements in Compressed Sparse Row format>

15


	Textual Data
	Bag-of-Words Model
	N-Grams

