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Roadmap for Today

Many data science techniques assume that all the variables are
quantitative.

• Example: measuring similarity / calculating distances
between observations

Last time, we learned how to convert categorical variables to
quantitative variables.

Today, we will learn how to convert a completely new type of
data to quantitative variables.
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Textual Data
A textual data set consists of multiple texts. Each text is called a
document. The collection of texts is called a corpus.

Example Corpus:
0 "I am Sam\n\nI am Sam\nSam I..."
1 "The sun did not shine.\nIt was..."
2 "Fox\nSocks\nBox\nKnox\n\nKnox..."
3 "Every Who\nDown in Whoville\n..."

4 "UP PUP Pup is up.\nCUP PUP..."

5 "On the fifteenth of May, in the..."

6 "Congratulations!\nToday is your..."

7 "One fish, two fish, red fish..."

−→

? ? ?

0 1 0 2 ...
1 0 1 0 ...
2 3 0 0 ...
3 0 2 1 ...
4 0 0 1 ...
5 2 0 5 ...
6 0 0 0 ...
7 0 2 0 ...

Goal: Turn this corpus into a matrix of numbers.

But what does each column represent?!
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Reading in Textual Data

Documents are usually stored in different files.

seuss_dir = "http://dlsun.github.io/pods/data/drseuss/"
seuss_files = [

"green_eggs_and_ham.txt", "cat_in_the_hat.txt",
"fox_in_socks.txt", "how_the_grinch_stole_christmas.txt",
"hop_on_pop.txt", "horton_hears_a_who.txt",
"oh_the_places_youll_go.txt", "one_fish_two_fish.txt"]

We have to read them in one by one.

import requests

docs = {}
for filename in seuss_files:

response = requests.get(seuss_dir + filename, "r")
docs[filename] = response.text
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document. The collection of texts is called a corpus.

Example Corpus:
0 "I am Sam\n\nI am Sam\nSam I..."
1 "The sun did not shine.\nIt was..."
2 "Fox\nSocks\nBox\nKnox\n\nKnox..."
3 "Every Who\nDown in Whoville\n..."

4 "UP PUP Pup is up.\nCUP PUP..."

5 "On the fifteenth of May, in the..."

6 "Congratulations!\nToday is your..."

7 "One fish, two fish, red fish..."

−→

? ? ?

0 1 0 2 ...
1 0 1 0 ...
2 3 0 0 ...
3 0 2 1 ...
4 0 0 1 ...
5 2 0 5 ...
6 0 0 0 ...
7 0 2 0 ...

Goal: Turn this corpus into a matrix of numbers.
But what would each column represent?!

7



1 Textual Data

2 Bag-of-Words Model

3 N-Grams

8



Bag-of-Words Model
In the bag-of-words model, each column represents a word, and
the values in the column are the word counts.
First, we need to count the words in each document.
from collections import Counter
Counter(docs["hop_on_pop.txt"].split())
Counter({'UP': 1, 'PUP': 3, 'Pup': 4, 'is': 10, 'up.': 2, ...})

We put these counts into a Series and stack them into a DataFrame.
import pandas as pd
pd.DataFrame(

[pd.Series(Counter(doc.split())) for doc in docs.values()],
index=docs.keys())

To get rid of the

NaNs, add .fillna(0).

This is called the term-
frequency matrix.
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Bag-of-Words in Scikit-Learn
Alternatively, we can use CountVectorizer in scikit-learn to
produce a term-frequency matrix.
from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer()
vec.fit(docs.values())
vec.transform(docs.values())

<8x1344 sparse matrix of type '<class 'numpy.int64'>'
with 2308 stored elements in Compressed Sparse Row format>

Wait! Why are there only 1344 words?

The set of words across a corpus is called the vocabulary. We can view
the vocabulary in a fitted CountVectorizer as follows:

vec.vocabulary_

{'am': 23, 'sam': 935, 'that': 1138, 'do': 287, 'not': 767, ...}

The number here represents the column index in the matrix!

(So column 23 contains the counts for "am", etc.)
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Text Normalization
What’s wrong with the way we counted words originally?
Counter({'UP': 1, 'PUP': 3, 'Pup': 4, 'is': 10, 'up.': 2, ...})

It’s usually good to normalize for punctuation and capitalization.

Normalization options are specified when you initialize the
CountVectorizer. By default, Scikit-Learn strips punctuation and
converts all characters to lowercase.

But if you don’t want Scikit-Learn to normalize for punctuation
and capitalization, you can do the following:
vec = CountVectorizer(lowercase=False, token_pattern=r"[\S]+")
vec.fit(docs.values())
vec.transform(docs.values())

<8x2562 sparse matrix of type '<class 'numpy.int64'>'
with 3679 stored elements in Compressed Sparse Row format>

Now we’re back to 2562 words in the vocabulary!
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The Shortcomings of Bag-of-Words
Bag-of-words is easy to understand and easy to implement.

What are its disadvantages?

Consider the following documents:
1 “The dog bit her owner.”
2 “Her dog bit the owner.”

Both documents have the same exact bag-of-words
representation:

the her dog owner bit
1 1 1 1 1 1
2 1 1 1 1 1

But they mean something quite different!
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N-grams
An n-gram is a sequence of n words.

N-grams allow us to capture more of the meaning.

For example, if we count bigrams (2-grams) instead of words, we
can distinguish the two documents from before:

1 “The dog bit her owner.”
2 “Her dog bit the owner.”

the,dog her,dog dog,bit bit,the bit,her the,owner her,owner
1 1 0 1 0 1 0 1
2 0 1 1 1 0 1 0
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N-grams in Scikit-Learn
Scikit-Learn can create n-grams.

Just pass in ngram_range= to the CountVectorizer. To get bigrams,
we set the range to (2, 2):
vec = CountVectorizer(ngram_range=(2, 2))
vec.fit(docs.values())
vec.transform(docs.values())

<8x5846 sparse matrix of type '<class 'numpy.int64'>'
with 6459 stored elements in Compressed Sparse Row format>

We can also get individual words (unigrams) alongside the
bigrams:
vec = CountVectorizer(ngram_range=(1, 2))
vec.fit(docs.values())
vec.transform(docs.values())

<8x7190 sparse matrix of type '<class 'numpy.int64'>'
with 8767 stored elements in Compressed Sparse Row format>
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