Lecture 8 Textual Data: Bag-of-Words and N-Grams

Dennis Sun Stanford University DATASCI 112

Roadmap for Today

Many data science techniques assume that all the variables are quantitative.

• *Example:* measuring similarity / calculating distances between observations

Last time, we learned how to convert categorical variables to quantitative variables.

Today, we will learn how to convert a completely new type of data to quantitative variables.

Textual Data

A textual data set consists of multiple texts. Each text is called a **document**. The collection of texts is called a **corpus**.

Example Corpus:

- 0 "I am Sam\n\nI am Sam\nSam I..."
- 1 "The sun did not shine.\nIt was..."
- Pox\nSocks\nBox\nKnox\n\nKnox...
- 3 "Every Who\nDown in Whoville\n..."
- 4 "UP PUP Pup is up.\nCUP PUP..."
- 5 "On the fifteenth of May, in the..."
- 6 "Congratulations!\nToday is your..."
- 7 "One fish, two fish, red fish..."

Reading in Textual Data

Documents are usually stored in different files.

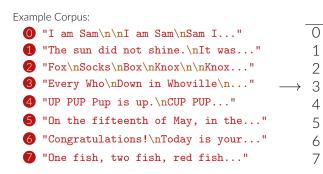
```
seuss_dir = "http://dlsun.github.io/pods/data/drseuss/"
seuss_files = [
    "green_eggs_and_ham.txt", "cat_in_the_hat.txt",
    "fox_in_socks.txt", "how_the_grinch_stole_christmas.txt",
    "hop_on_pop.txt", "horton_hears_a_who.txt",
    "oh_the_places_youll_go.txt", "one_fish_two_fish.txt"]
```

We have to read them in one by one.

```
import requests
docs = {}
for filename in seuss_files:
    response = requests.get(seuss_dir + filename, "r")
    docs[filename] = response.text
```


Textual Data

A textual data set consists of several texts. Each text is called a **document**. The collection of texts is called a **corpus**.



Goal: Turn this corpus into a matrix of numbers. But what would each column represent?!

222

 $0 \ 2$

 $0 \ 2 \ 1$

0 0 1

0 0

0

 $2 \ 0$

2 0 5 ...

...

...

0 ...

1

0 1 0 ...

3 0 0 ...

In the **bag-of-words model**, each column represents a word, and the values in the column are the word counts.

First, we need to count the words in each document.

from collections import Counter Counter(docs["hop_on_pop.txt"].split()) Counter({'UP': 1, 'PUP': 3, 'Pup': 4, 'is': 10, 'up.': 2, ...})

We put these counts into a Series and stack them into a DataFrame.

import pandas as pd

pd.DataFrame(

[pd.Series(Counter(doc.split())) for doc in docs.values()], index=docs.keys())

	I	am	Sam	That	Sam- I-am	Sam- I- am!	đo	not	like	that	
green_eggs_and_ham.txt	71.0	3.0	3.0	2.0	4.0	2.0	34.0	46.0	44.0	1.0	
cat_in_the_hat.txt	48.0	NaN	NaN	4.0	NaN	NaN	13.0	27.0	13.0	16.0	
fox_in_socks.txt	9.0	NaN	NaN	NaN	NaN	NaN	6.0	1.0	1.0	1.0	
hop_on_pop.txt	2.0	1.0	NaN	2.0	NaN	NaN	NaN	2.0	5.0	2.0	
horton_hears_a_who.txt	18.0	1.0	NaN	7.0	NaN	NaN	NaN	3.0	NaN	24.0	
how_the_grinch_stole_christmas.txt	6.0	NaN	NaN	2.0	NaN	NaN	2.0	1.0	2.0	11.0	
oh_the_places_youll_go.txt	2.0	NaN	NaN	NaN	NaN	NaN	2.0	6.0	1.0	11.0	
one_fish_two_fish.txt	48.0	3.0	NaN	NaN	NaN	NaN	11.0	9.0	21.0	1.0	

To get rid of the NaNs, add .fillna(0).

This is called the **term**-**frequency matrix**.

Bag-of-Words in Scikit-Learn

Alternatively, we can use **CountVectorizer** in scikit-learn to produce a term-frequency matrix.

```
from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer()
vec.fit(docs.values())
vec.transform(docs.values())
```

<8x1344 sparse matrix of type '<class 'numpy.int64'>' with 2308 stored elements in Compressed Sparse Row format> Wait! Why are there only 1344 words?

The set of words across a corpus is called the **vocabulary**. We can view the vocabulary in a fitted **CountVectorizer** as follows:

vec.vocabulary_

{'am': 23, 'sam': 935, 'that': 1138, 'do': 287, 'not': 767, ...}

The number here represents the column index in the matrix! (So column 23 contains the counts for "am", etc.)

Text Normalization

What's wrong with the way we counted words originally? Counter({'UP': 1, 'PUP': 3, 'Pup': 4, 'is': 10, 'up.': 2, ...})

It's usually good to **normalize** for punctuation and capitalization.

Normalization options are specified when you initialize the **CountVectorizer**. By default, Scikit-Learn strips punctuation and converts all characters to lowercase.

But if you don't want Scikit-Learn to normalize for punctuation and capitalization, you can do the following:

```
vec = CountVectorizer(lowercase=False, token_pattern=r"[\S]+")
vec.fit(docs.values())
vec.transform(docs.values())
```

<8x2562 sparse matrix of type '<class 'numpy.int64'>' with 3679 stored elements in Compressed Sparse Row format>

Now we're back to 2562 words in the vocabulary!

The Shortcomings of Bag-of-Words

Bag-of-words is easy to understand and easy to implement.

What are its disadvantages?

Consider the following documents:

- 1 "The dog bit her owner."
- 2 "Her dog bit the owner."

Both documents have the same exact bag-of-words representation:

	the	her	dog	owner	bit
1	1	1	1	1	1
2	1	1	1	1	1

But they mean something quite different!

N-grams

An **n-gram** is a sequence of *n* words.

Google Books Ngram Viewer

N-grams allow us to capture more of the meaning.

For example, if we count **bigrams** (2-grams) instead of words, we can distinguish the two documents from before:

- 1 "The dog bit her owner."
- 2 "Her dog bit the owner."

	the,dog	her,dog	dog,bit	bit,the	bit,her	the,owner	her,owner
1	1	0	1	0	1	0	1
2	0	1	1	1	0	1	0

N-grams in Scikit-Learn

Scikit-Learn can create n-grams.

```
Just pass in ngram_range= to the CountVectorizer. To get bigrams, we set the range to (2, 2):
```

```
vec = CountVectorizer(ngram_range=(2, 2))
vec.fit(docs.values())
vec.transform(docs.values())
```

<8x5846 sparse matrix of type '<class 'numpy.int64'>' with 6459 stored elements in Compressed Sparse Row format>

We can also get individual words (unigrams) alongside the bigrams:

```
vec = CountVectorizer(ngram_range=(1, 2))
vec.fit(docs.values())
vec.transform(docs.values())
```

<8x7190 sparse matrix of type '<class 'numpy.int64'>' with 8767 stored elements in Compressed Sparse Row format>