
Lecture 9
Textual Data: Vector Space Model and TF-IDF

Dennis Sun
Stanford University

DATASCI 112

January 29, 2024

1

1 Review

2 Vector Space Model

3 tf-idf

2

1 Review

2 Vector Space Model

3 tf-idf

3

Textual Data

0 “Whoever has hate for his brother is in the darkness and
walks in the darkness.” —1 John 2:11

1 “Hello darkness, my old friend.” —Simon & Garfunkel
2 “Returning hate for hate multiplies hate, adding deeper

darkness to a night already devoid of stars. Darkness
cannot drive out darkness; only light can do that.” —MLK

⇒

darkness hate ...

0 2 1 ...
1 1 0 ...
2 3 3 ...

Which document is most similar to document 0?

darkness

hate

0

1

2

Using Euclidean distance,

document 1 appears closer

than document 2!

4

1 Review

2 Vector Space Model

3 tf-idf

5

Vector Space Model
In the vector space model, documents are represented as vectors
instead of points.

darkness

hate

x0

x1

x2

θ

The length of a vector is its
distance from the origin 0:

||v|| =

√√√√√ |V |∑
j=1

v2j .

The distance between two vectors corresponds to the angle
between them:

d(x,x′) = 1− cos θ = 1−
∑|V |

j=1 xjx
′
j

||x|| ||x′||
.

Using cosine distance, document 2 now appears closer!

6

Implementing the Vector Space Model
documents = [

"whoever has hate for his brother is in the darkness and walks in the darkness",
"hello darkness my old friend",
"returning hate for hate multiplies hate adding deeper darkness to a night already devoid of stars darkness cannot drive out darkness only light can do that"

]

First, we use Pandas to get the term-frequency matrix.
import pandas as pd
from collections import Counter

tf = pd.DataFrame(
[Counter(doc.split()) for doc in documents],

).fillna(0)
tf

Now we just have to implement the formula for cosine distance.
7

Implementing the Vector Space Model

tf =

Now we just have to implement the formula for cosine distance.

d(x,x′) = 1−
∑|V |

j=1 xjx
′
j

||x|| ||x′||
.

import numpy as np

def length(v):
return np.sqrt((v ** 2).sum())

def cos_dist(v, w):
return 1 - (v * w).sum() / (length(v) * length(w))

cos_dist(tf.loc[0], tf.loc[1]), cos_dist(tf.loc[0], tf.loc[2])

(0.8048199854102933, 0.6460038372976056)
8

Vector Space Model in Scikit-Learn
It’s always easier to do it in Scikit-Learn.

from sklearn.feature_extraction.text import CountVectorizer

vec = CountVectorizer(token_pattern=r"\w+")
vec.fit(documents)
tf_matrix = vec.transform(documents)
tf_matrix.todense()

matrix([[0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 1, 1, 0, 0, 1, 1, 3, 1, 1, 1, 1, 1, 0, 0, 3, 0, 0, 0, 0, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0]])

from sklearn.metrics import pairwise_distances
pairwise_distances(tf_matrix[0, :], tf_matrix,

metric="cosine")

array([[0. , 0.80481999, 0.64600384]])

9

1 Review

2 Vector Space Model

3 tf-idf

10

tf-idf
So far, we’ve simply counted the term frequency tf(d, t): how
many times each term t appears in each document d.
Problem: Common words like “is” or “the” tend to dominate
because they have high counts.
We need to adjust for how common each word is:
1. Count the fraction of documents the term appears in:

df(t,D) =
documents containing term t

documents
=

|{d ∈ D : t ∈ d}|
|D|

2. Invert and take a log to obtain inverse document frequency:

idf(t,D) = 1 + log
1

df(t,D)
.

3. Multiply tf by idf to get tf-idf:
tf-idf(d, t,D) = tf(d, t) · idf(t,D).

Now we can use the tf-idf matrix just like we used the
term-frequency matrix.

11

tf-idf by Hand
The term-frequency matrix for this corpus is:

0 “Whoever has hate for his brother is in the darkness and
walks in the darkness.”

1 “Hello darkness, my old friend.”
2 “Returning hate for hate multiplies hate, adding deeper

darkness to a night already devoid of stars. Darkness
cannot drive out darkness; only light can do that.”

⇒

darkness hate ...

0 2 1 ...
1 1 0 ...
2 3 3 ...

Now let’s calculate the tf-idf matrix!
1. Calculate the document frequencies:

df(“darkness”, D) =
3

3
= 1 df(“hate”, D) =

2

3

2. Calculate the inverse document frequencies:

idf(“darkness”, D) = 1 + log 1 = 1 idf(“hate”, D) = 1 + log
3

2
≈ 1.176

3. Multiply tf by idf to get tf-idf:

darkness hate ...

0 2 1.176 ...
1 1 0 ...
2 3 3.528 ...

12

tf-idf in Scikit-Learn

from sklearn.feature_extraction.text import TfidfVectorizer

The options ensure that the numbers match our example above.
vec = TfidfVectorizer(smooth_idf=False, norm=None)
vec.fit(documents)
tfidf_matrix = vec.transform(documents)

Now we can use this tf-idf matrix just as we used the term
frequency matrix!

pairwise_distances(tfidf_matrix[0, :], tfidf_matrix,
metric="cosine")

array([[0. , 0.94612045, 0.84453506]])

13

Dr. Seuss Example

Let’s go into Colab and find the Dr. Seuss book that is most
similar to One Fish, Two Fish, Red Fish, Blue Fish.

14

https://colab.research.google.com/drive/12gUdJjEGCjvR49mm1l9901grhfCpFv-0#scrollTo=Dr_Seuss_Example

	Review
	Vector Space Model
	tf-idf

