Lecture 12 Outline:
Quadrature Modulation
FIR Filter Design

Announcements:
- **Reading**: “4: FIR Discrete-Time Filters” pp. 7-18, Optional reading on QAM Modulation: pp. 16-22 of posted lecture slides on Digital Modulation
- Midterm announcements next week: MT likely to be Thurs. May 5 evening and will cover material through FIR Filter Design

Review of Last Lecture

Quadrature Modulation: MQAM

Introduction to FIR Filter Design

Impulse Response Matching

Frequency Response Matching
Digital communication systems modulate bits onto baseband signal \(m(t) \), then use passband modulation on \(m(t) \)
- May also preprocess bits with compression and coding
- Analog information signals converted to bits via ADC

- **Baseband digital modulation**: ON-OFF \((a_k = A, 0)\), POLAR \((a_k = \pm A)\)
 \[
m(t) = \sum_{k=-\infty}^{\infty} a_k \text{rect}(t - kT_b) = x(t) \ast \text{rect}(t) \quad \text{for} \quad x(t) = \sum_{k=-\infty}^{\infty} a_k \delta(t - kT_b)
\]

- **Passband digital modulation for ASK/PSK is a special case of DSBSC**:
 \[
s(t) = \sum m(t) \cos(\omega_c t + \varphi)
\]

- **Demodulation** downconverts, integrates, and then uses a decision device to determine if a “1” or “0” was sent
 - Downconversion must be coherent; requires acquisition of phase \(\phi \)
- Noise can cause decision device to output an erroneous bit
Quadrature Digital Modulation: MQAM

- Sends different bit streams on the sine and cosine carriers
- Baseband modulated signals often has \(L > 2 \) levels, with \(L = 2^l \)
 - More levels for the same TX power leads to smaller noise immunity and hence higher error probability
 - Has \(M = L^2 \) possible values for \((m_1(kT_s), m_2(kT_s))\)→log_2M bits per symbol time \(T_s \), Data rate is \(\log_2M / T_s \) bps; called MQAM modulation
- 10 Gbps WiFi has 1024-QAM (10 bits / \(T_s \))

\[
\begin{align*}
 m_i(t) &= 10, 11, 00, 01 \\
 A &= 10, 11, 00, 01 \\
 A/3 &= -A/3, -A \\
 A/3 &= -A/3, -A \\
 T_s &= \text{symbol time} \\
 m_1(t)\cos(\omega_c t) + m_2(t)\sin(\omega_c t) + n(t) \\
 \cos(\omega_c t) \\
 -90^\circ \\
 \sin(\omega_c t) \\
 \text{Data rate: } \log_2M \text{ bits} / T_s \\
 T_s \text{ is called the symbol time}
\end{align*}
\]
Introduction to FIR Filter Design

- Signal processing today done digitally
 - Cheaper, more reliable, more energy-efficient, smaller

- Discrete time filters in practice must have a finite impulse response: $h[n]=0, \ |n| > M/2$
 - Otherwise processing takes infinite time

- FIR filter design typically entails approximating an ideal (IIR) filter with an FIR filter
 - Ideal filters include low-pass, bandpass, high-pass
 - Might also use to approximate continuous-time filter

- We focus on two approximation methods
 - Impulse response and filter response matching
 - Both lead to the same filter design
Impulse Response Matching

- Given a desired (noncausal, IIR) filter response $h_d[n]$
 \[h_d[n] \leftrightarrow H_d(e^{j\Omega}) \]

- Objective: Find FIR approximation $h_a[n]$: $h_a[n]=0$ for $|n|>M/2$ to minimize error of time impulse response
 \[
 \varepsilon = \sum_{n=-\infty}^{\infty} |h_d[n] - h_a[n]|^2 = \sum_{|n|\leq\frac{M}{2}} |h_d[n] - h_a[n]|^2 + \sum_{|n|>\frac{M}{2}} |h_d[n]|^2, \text{ since } h_a[n] = 0, |n| > M / 2
 \]
 Doesn’t depend on $h_a[n]$

- By inspection, optimal (noncausal) approximation is
 \[
 h_a[n] = \begin{cases}
 h_d[n] & |n| \leq M / 2 \\
 0 & |n| > M / 2
 \end{cases}
 \]
 Exhibits Gibbs phenomenon from sharp time-windowing
Frequency Response Matching

- Given a desired frequency response $H_d(e^{j\Omega})$

- Objective: Find FIR approximation $h_a[n]$: $h_a[n]=0$ for $|n|>M/2$ that minimizes error of freq. response

$$\varepsilon = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| H_d(e^{j\Omega}) - H_a(e^{j\Omega}) \right|^2 d\Omega$$

- Set $x[n] = h_d[n] - h_a[n]$ and $X(e^{j\Omega}) = H_d(e^{j\Omega}) - H_a(e^{j\Omega})$

- By Parseval’s identity: $\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\Omega})|^2 d\Omega$

 - Time-domain error and frequency-domain error equal
 - Optimal filter same as in impulse response matching

$$h_a[n] = \begin{cases} h_d[n] & |n| \leq M/2 \\ 0 & |n| > M/2 \end{cases}$$
Main Points

- MQAM modulation sends independent bit streams on cosine and sine carriers where baseband signals have $L = \sqrt{M}$ levels
 - Leads to data rates of M/T_s bps (can be very high)

- FIR filter design entails approximating an ideal discrete or continuous filter with a discrete filter of finite duration

- Impulse response and frequency response matching minimizes time/frequency domain error; have same noncausal design
 - Optimal filter has $M+1$ of original discrete-time impulse response values
 - Sharp windowing causes “Gibbs” phenomenon (wiggles)

- Will refine design to make it causal via a delay and will use smooth windowing to mitigate Gibbs phenomenon