Lecture 22 Outline:
Laplace Examples, Inverse, Rational Form

- **Announcements:**
 - **Reading:** “6: The Laplace Transform” pp. 9-18.
 - HW 7 posted, due today

- More Laplace Transform Examples

- Inverse Laplace Transforms

- Rational Laplace Transforms

- ROCs for Right/Left/Two-sided Signals

- Magnitude/Phase of Fourier Transforms from Laplace
Review of Last Lecture

- Laplace transform generalizes Fourier Transform
 - Always exists within a Region of Convergence
 - Used to study systems/signals w/out Fourier Transforms

Defn: \(L[x(t)] = X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} \, dt \), \(s = \sigma + j\omega \); exists if \(\int_{-\infty}^{\infty} |x(t)e^{-\sigma t}| \, dt < \infty \)

- Relation with Fourier Transform:
 \[
 L[x(t)] = F\left[x(t)e^{-\alpha t} \right] \quad X(s)\big|_{s=j\omega} = X(j\omega) = F[x(t)]
 \]

- Region of Convergence (ROC):
 - All values of \(s=\sigma+j\omega \) such that \(L[x(t)] \) exists
 - Depends only on \(\sigma \)

- Example
 \[
 e^{-at}u(t) \xrightarrow{L} X(s) = \frac{1}{s + a}, \quad \text{Re}(s) > -a
 \]
Laplace Transform Examples

- **Rect function:** \(x_2(t) = \Pi\left(\frac{t}{2\tau}\right) = \begin{cases} 1 & |t| \leq \tau \\ 0 & |t| > \tau \end{cases} \)
 - Familiar friend; has a Fourier transform
 - Laplace Transform: \(X_2(s) = \int_{-\tau}^{\tau} e^{-st} dt = \frac{e^{s\tau} - e^{-s\tau}}{s} \)
 - ROC: Finite everywhere except possibly \(s=0 \): \(\lim_{s \to 0} X_2(s) = \lim_{s \to 0} \frac{d}{ds} \left(e^{s\tau} - e^{-s\tau} \right) = 2\tau \)
 - So ROC is entire \(s \)-plane: \(ROC=\{\text{all } s\} \): true for any finite duration absolutely integrable function
 - Fourier transform \((j\omega \in ROC) \): \(X_2(j\omega) = \frac{e^{j\omega\tau} - e^{-j\omega\tau}}{j\omega} = 2\tau \frac{\sin \omega\tau}{\omega\tau} = 2\tau \text{sinc}\left(\frac{\omega\tau}{\pi}\right) \)

- **Left-Sided Real Exponential:** \(x_4(t) = -e^{-at}u(-t) \)
 - Laplace: \(X_4(s) = -\int_{-\infty}^{0} e^{-(s+a)t} dt \), converges if \(\text{Re}(s)<-a \)
 - \(X_4(s) = \frac{1}{s + a} \), \(\text{Re}(s) < -a \)
 - Same as for right-sided case but with a different ROC \((\text{Re}(s)>-a) \)
 - Does not have a Fourier transform if \(-a<0\), else \(X_4(j\omega) = \frac{1}{j\omega + a} \)
Another Example: Two-Sided Real Exponential

\[x_5(t) = e^{b|t|}, \quad b \text{ real} \]

- Can write as sum of two terms: \[x_5(t) = e^{bt}u(t) + e^{-bt}u(-t) \]

\[e^{bt}u(t) \leftrightarrow \frac{1}{s-b}, \quad \text{Re}(s) > b \]
\[e^{-bt}u(-t) \leftrightarrow -\frac{1}{s+b}, \quad \text{Re}(s) < -b \]

\[
X_5(s) = \frac{1}{s-b} - \frac{1}{s+b} = \frac{2b}{(s-b)(s+b)} = \frac{2b}{s^2 - b^2}
\]

\[\text{ROC} = \{\text{Re}(s) > b\} \cap \{\text{Re}(s) < -b\} \]
Inverse Laplace Transform

- **Use Fourier Relation:** \(X(s) = X(\sigma + j\omega) = F[x(t)e^{-\sigma t}] = \int_{-\infty}^{\infty} x(t)e^{-\sigma t}e^{-j\omega t} dt \)

- **Can apply inverse Fourier:**

 \[
 x(t)e^{-\sigma t} = F^{-1}[X(\sigma + j\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\sigma + j\omega)e^{j\omega \tau} d\omega
 \]

 - Multiply both sides by \(e^{-\sigma t} \):

 \[
 x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\sigma + j\omega)e^{(\sigma + j\omega)\tau} d\omega
 \]

- **How to integrate over s-plane: change of variables**

 - \(s = \sigma + j\omega; \sigma \text{ fixed}, \ ds = dj\omega \):

 \[
 x(t) = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} X(s)e^{st} ds
 \]

 - Complex integration part of complex analysis (Math 116)
 - We need a different approach

- **Rational Laplace Transforms:**

 - Inverse obtained through partial fraction expansion
 - Allows analysis through pole-zero plots
Rational Laplace Transforms

- Numerator and Denominator are polynomials
 \[X(s) = \frac{B(s)}{A(s)} = \frac{b_0 + b_1 s + \cdots + b_{M-1} s^{M-1} + b_M s^M}{a_0 + a_1 s + \cdots + a_{N-1} s^{N-1} + a_N s^N} \]

- Can factor as product of monomials
 \[X(s) = \frac{b_M}{a_N} \frac{(s - \beta_1)(s - \beta_2) \cdots (s - \beta_{M-1})(s - \beta_M)}{(s - \gamma_1)(s - \gamma_2) \cdots (s - \gamma_{N-1})(s - \gamma_N)} \]

 - \(\beta \)'s are zeros (where \(X(s) = 0 \)), \(\gamma \)'s are poles (where \(X(s) = \infty \))
 - ROC cannot include any poles
 - If \(X(s) \) real, \(a \)'s and \(b \)'s are real \(\rightarrow \) all zeros of \(X(s) \) are real or occur in complex-conjugate pairs. Same for the poles.
 - \(b_m/a_n \), zeros, poles, and ROC fully specify \(X(s) \)

- Example: Two-sided Exponential
 \[X_5(s) = \frac{1}{s-b} - \frac{1}{s+b} = \frac{2b}{(s-b)(s+b)} = \frac{2b}{s^2 - b^2} \]
More on Laplace

- ROC for Right, Left, and Two-Sided Signals
 - Right-sided: \(x(t) = 0\) for \(t < a\) for some \(a\)
 - ROC is to the right of the rightmost pole, e.g. RH exponential
 - Left-sided: \(x(t) = 0\) for \(t > a\) for some \(a\)
 - ROC is to the left of the leftmost pole, e.g. LH exponential
 - Two-sided: neither right or left sided
 - ROC is a vertical strip between two poles, e.g. 2-sided exponential

- Magnitude/Phase of Fourier from Laplace
 - Given Laplace in rational form with \(j\omega\) in ROC
 \[
 H(s) = \frac{b_M}{a_N} \prod_{k=1}^{N} (s - \gamma_k) \quad \implies \quad H(j\omega) = \frac{b_M}{a_N} \prod_{k=1}^{M} (j\omega - \beta_k) \prod_{k=1}^{N} (j\omega - \gamma_k) \\
 |H(j\omega)| = \frac{b_M}{a_N} \left| \prod_{k=1}^{M} (j\omega - \beta_k) \prod_{k=1}^{N} (j\omega - \gamma_k) \right| \\
 \angle H(j\omega) = \angle \left(\frac{b_M}{a_N} \right) + \sum_{k=1}^{M} \angle (j\omega - \beta_k) - \sum_{k=1}^{N} \angle (j\omega - \gamma_k)
 \]
 - Can obtain magnitude and phase from individual components using geometry, formulas, or Matlab
Main Points

- Laplace transform includes the ROC; different functions can have same Laplace transform with different ROCs.

- Inverse Laplace transform requires complex analysis to compute: need a different approach.

- Expressing the Laplace transform in rational form allows inverse via partial fraction expansion.
 - Also allows Laplace characterization via pole-zero plot.

- One-Sided signals have sided ROCs. Two sided signals have strips as ROCs.

- Can determine magnitude and phase of Fourier transform easily from rational form of Laplace.