Additional Practice Problems for Final Exam

1. Linear and circular convolution
In this problem we explore a new method to get the circular convolution of two sequences \(X = \{x[n]\}_{n=0}^{N-1} \) and \(H = \{h[n]\}_{n=0}^{M-1} \) from their linear convolution. Assume \(N > M \).

Define a new sequence \(X_p = \{x_p[n]\}_{n=-M+1}^{N-1} \) defined so that

\[
x_p[n] = \begin{cases} x[n], & \text{if } n \geq 0 \text{ and } n < N \\ 0, & \text{otherwise} \end{cases}
\]

So this is a zero-padded version of \(x[n] \) but with zeros at the beginning of the sequence, for \(-M+1 \leq n < 0\).

Let \(y[n] = x_p[n] * h[n] \) and define \(y'[n] = \begin{cases} y[n], & \text{if } N \geq n \geq M \\ y[n] + y[N+n], & \text{if } 0 \leq n \leq M \end{cases} \).

Show that \(y'[n] = h[n] \odot x[n] \) for \(n \in [0, N-1] \).

2. Discrete Fourier transforms
Consider a periodic signal \(\tilde{x}[n] \) with period \(N = 4 \) and the corresponding one-period signal \(x[n] \) with duration \(N = 4 \).

These signals can be described by the discrete Fourier series and discrete Fourier transform:

\[
\tilde{x}[n] \leftrightarrow \tilde{X}[k] \quad \text{and} \quad x[n] \leftrightarrow X[k].
\]

(a) (10 points) Describe all the symmetries present in the time signal and their implications for the Fourier description. You may consider either \(\tilde{x}[n] \leftrightarrow \tilde{X}[k] \) or \(x[n] \leftrightarrow X[k] \).

(b) (15 points) Give an expression for the DFT \(X[k] \). To earn full credit, your answer should be purely real or purely imaginary (the symbol \(j \) should appear at most once). You may find it easy to compute the DTFT \(X(e^{j\Omega}) \) and then sample it to obtain \(X[k] \).
(c) (5 points) Sketch $X[k]$ vs. k for $0 \leq k \leq 3$. It is easiest to plot the real and imaginary parts (whichever is nonzero), rather than the magnitude and phase.

3. **Limits:** For a causal $x(t)$ whose transform is given by $X(s)=1/(s^2+2s)$, evaluate $\lim_{t \to \infty} x(t)$

4. **Z transform.**

We are given the following information about a signal $x[n]$ and its Z transform $X(z)$:

(i) $x[n]$ is real and right-sided.

(ii) $X(z)$ has exactly two zeros, both at the origin.

(iii) $X(z)$ has exactly two poles.

(iv) $X(z)$ has a pole at $z = \gamma_1 = \frac{1}{\sqrt{2}} e^{\frac{j\pi}{4}}$.

(v) $X(1) = 2$.

(a) Find an expression for $X(z)$ and specify its region of convergence.

(b) Find an expression for $x[n]$. To obtain full credit, your answer should be purely real. *Hint:* the coefficients in $X(z)$ have been chosen so that $X(z)$ can be inverted using two Z transforms appearing in transform tables, so no partial-fraction expansion is necessary. Nevertheless, the correct answer can be obtained using partial-fraction expansion.

5. **Discrete-time Systems Characterized by Difference Equations:** A causal LTI system is described by the difference equation:

$$y[n] = y[n-1] + y[n-2] + x[n-1]$$

(a) Find the system function $H(z) = Y(z)/X(z)$ for this system. Plot the poles and zeros of $H(z)$ and indicate the region of convergence.

(b) Find the unit sample response of the system.

(c) You should have found the system to be unstable. Find a stable (noncausal) unit sample response that satisfies the difference equation.

6. **Bilinear Z transform filter design.**

We start with a continuous-time first-order lowpass filter with impulse response and transfer function

$$h_c(t) = \frac{1}{\tau} e^{-\frac{t}{\tau}} u(t) \leftrightarrow H_c(s) = \frac{1}{1+\frac{s}{\tau}}.$$
We choose a sampling rate $1/T$ and design a discrete-time filter $h[n] \leftrightarrow H(z)$ whose transfer function satisfies

$$H(z) = H_c(s) = \frac{2(1-z^{-1})}{T(1+z^{-1})}.$$

It is helpful to define

$$b = \frac{T - 2\tau}{T + 2\tau}.$$

(a) Give an expression for the transfer function $H(z)$.
(b) Give an expression for the impulse response $h[n]$.
(c) Sketch the poles and zeros of $H(z)$.
(d) Sketch the magnitude response $|H(e^{j\omega})|$, assuming $T = 1$, $\tau = 2$, $b = 0.6$.
