FPCVT in software

FRAC <<= EXP;
if (SIGN == 1) {
 FRAC = -FRAC; /* 12-bit two’s complement */
}
or
for (i = 0; i < EXP; i++) {
 FRAC <<= 1; /* multiply by 2 */
}
or
switch (EXP) {
 case 1: FRAC <<= 1; break;
 case 2: FRAC <<= 2; break;
 ...
 case 7: FRAC <<= 7; break;
}

FPCVT in hardware

Possible values of the fixed point output are shifts of the input fraction.

The multiplexer select signals control the amount of the shift (0 to 7).
Bistable elements

Sequential circuits require memory. Possible storage devices:

- mechanical position (requires solenoids or motors to change)
- magnetic charge
- charge on capacitors (may require sense amplifiers)
- feedback loops in logic circuit:

\[
\begin{align*}
V_{in1} & \quad V_{out1} \\
V_{in2} & \quad V_{out2} \\
\end{align*}
\]

There are two solutions to system of equations, \(Q_L = Q', Q = Q_L' \):

\[
\begin{align*}
Q_L = 0, \ Q' = 1 \quad & \text{or} \quad Q_L = 1, \ Q' = 0 \\
\end{align*}
\]

State can be changed by setting input to a value for \(\geq \) two gate delays.

Metastability

There are metastable states between stable states (continuity argument).

Changing state of a bistable requires energy and time. Insufficient driving force results in metastable state (or oscillation).
D latch

Simplest memory device is D latch: if C then D else Q

Implementation using multiplexer built from NAND gates:

The multiplexer circuit has a hazard, which can cause failure.
Moral: let experts design the basic memory cells (latches and flip-flops).

D latch: behavior and timing

Representative circuit and function table:

Functional behavior for various inputs:
D latch precursors: S-R latch

S-R latch has two control inputs, \(S = \text{set}, \ R = \text{reset} \).

\[
\begin{array}{cccc|c}
0 & 0 & \text{last } Q & \text{last } Q_N \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
\end{array}
\]

Set and reset signals normally should not be asserted simultaneously.

D latch precursors: S-R latch with enable

Control signals \(R \) and \(S \) are ignored when \(C \) is false.

Replace \(R \) and \(S \) by \(D' \) and \(D \) to obtain D latch.
Flip-flops

D latches are transparent: $D = Q$ while $C = 1$.
- Advantage: input changes can be seen immediately at output
- Disadvantage: output changes when input changes (while $C = 1$).

Desired behavior for a memory device: stored value changes only at discrete time instants, determined by rising or falling edges of clock signal.

D flip-flop: implementation

One circuit design for a D flip-flop uses two D latches.

Straightforward implementation of master-slave flip-flop:
D flip-flop: implementation (2)

Representative circuit for TTL flip-flop (74x74):

Flip-flops built directly from CMOS transistors will use clever methods to reduce size and delay and improve reliability.

D flip-flop: logic model and timing

Correct behavior is guaranteed if data is stable during a window surrounding the active clock edge:
- \(t_{\text{setup}} = \) time before clock edge
- \(t_{\text{hold}} = \) time after clock edge

Window duration is \(t_{\text{setup}} + t_{\text{hold}} \) depends on the technology and gate delays.
Other flip-flops

Flip-flops sometimes include additional logic:
- edge-triggered D flip-flop with enable
- master-slave S-R flip-flop
- master-slave J-K flip-flop
- edge-triggered J-K flip-flop
- T flip-flop (toggles with each clock edge)
- T flip-flop with enable
- scan flip-flop (used in boundary scan chains)
Lab #4: Auxiliary components

- 3-bit register stores state of system (last winning request).

- Seven-segment hexadecimal displays:
 - Used for observing system.
 - Two identical components
 - Simple combinatorial logic can be represented by a table (ROM).

- 3-to-8 decoder displays winning request. In a real system, the output would acknowledge request and initiate further action.

Lab #4: Programmable Priority Encoder

<table>
<thead>
<tr>
<th>PPE</th>
<th>IREQ[7:0]</th>
<th>request inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOW[2:0]</td>
<td>last winning request</td>
</tr>
<tr>
<td></td>
<td>WIN[2:0]</td>
<td>highest priority request</td>
</tr>
<tr>
<td></td>
<td>CNT[3:0]</td>
<td>number of active requests</td>
</tr>
</tbody>
</table>

- REQ is active low for historical reasons
- REQ is redundant since CNT is available, but it simplifies control of state memory flip-flops
- The main priority encoder output WIN[2:0] can be formed by multiplexing 8 priority encoders.