
EE 155/255 Lab #2 Revision 1, October 5, 2017

Lab2: Energy Meter

In this lab, you’ll build and program a meter that measures voltage, current, power, and energy at DC and

AC.

Assigned: October 2, 2017

Due: Week of October 9, 2017

Part 1

New Code

Pull the latest code from the class Github repo using git pull. If you are working on a private repos-

itory you will have to run git pull upstream master assuming you have mapped a remote to the

class repository. If you haven’t set up a remote repository for the class Github you can through the com-

mand git remote add upstream https://github.com/ndanyliw/green-electronics.git.

The lab starter files will be under ‘labs/lab2/’. For more details look at our Git Tutorial.

For this lab, you should be able to do everything by editing lab2.c and lab2.h. Function prototypes are

provided and all you need to do is write the code for all the necessary methods.

Part 2

Analog to Digital Conversion

To measure power delivered to the load, you need to measure the voltage across the load and current through

the load nearly simultaneously. Circuitry is provided to convert the load voltage and current into voltages

which are safe for the microcontroller to measure.

The STM32F303 has 4x12-bit 5 Msps ADCs connected to 39 external channels. There are many modes in

which these ADCs can be operated and controlled. For those who are curious please check out the chip

datasheet and user manual (located in the “datasheets” folder). The provided ADC library samples the

user-specified channels sequentially and stores the results using the DMA controller. The conversion order

is specified by the programmer. At the end of a set of conversions, the library will call the provided user

callback and pass in the results to be processed. The reference for the ADCs is set to 3V so analog signals

will have to range between 0-3V to avoid saturation.

The converters are set to operate in a single ended mode so a result of 0 corresponds to 0V and 0xfff is 3V.

On the fast channels the conversions take 0.19 µs. This can be sped up to 0.16 µs if reducing the resolution

to 10 bits.

The EE155 libraries provide a simplified interface to the ADCs with a small subset of their possible func-

Part 2 continued on next page. . . Page 1 of 7

http://web.stanford.edu/class/ee152/labs/GithubTutorial.pdf

EE 155/255 Lab #2 Revision 1, October 5, 2017 Part 2 (continued)

tionality. To fully utilize the converters on the board you will have to expand on the libraries’ functionality

using STM’s abstraction libraries (check out stm32f30x adc.h/c).

For a good overview on the ADCs check out the STM32F3 ADC PDF in the Github repository.

ADC Initialization

Before you can use the ADCs, you will have to initialize the library. The basic ADC initialization is handled

in the ge init() method.

To set the sampling frequency use adc set fs(float fs). This will set up TIM2 to trigger the ADC at

the appropriate intervals. Specify the frequency in Hz.

Setting up Channels

To enable specific ADC channels, you must specify the channels and pass them to the adc enable channels()

method. This function expects an array with the desired channels in the order to convert. The library will

then handle enabling the necessary pins and scheduling the conversions. The final order of conversion is

determined by the order specified by the user and the ADC used. Each ADC runs simultaneously and

the order it does its conversions is dictated by the user’s desired order. For example if the user specified

{ADC1 1, ADC1 3, ADC2 1, ADC1 2} for their conversions, where ADCx y corresponds to channel y on

ADCx, the actual conversion order would be as follows:

ADC1 1 — ADC1 3 — ADC1 2

ADC2 1

Assuming that ADC1 and ADC2 are triggered on the same event (which they are in the library) the con-

versions for ADC1 1 and ADC2 1 occur simultaneously.

The names for the available ADC channels can be found in ge adc.h in the enumerated ADC CHAN Type

structure. The channels follow the naming scheme ADCx y (channel y of ADCx). To see what pins are

mapped to the ADC channel, refer to the adc pin map array in ge adc.c. The available channels and

mapped pins are also outlined in Table 1.

Starting Conversions

After configuring the ADC library, to actually start conversions use adc start() which will launch the

timer and begin conversions. To stop the converter use adc stop().

Processing Results

After all the conversions complete, the library will call the user provided callback function. The function

is given a pointer to the array containing all the most recent conversion results. The data is formatted

as 12-bit unsigned integers and stored in uint16 t variables. The order of the array corresponds to the

original channel ordering given by the user to adc enable channels().

Part 2 continued on next page. . . Page 2 of 7

EE 155/255 Lab #2 Revision 1, October 5, 2017 Part 2 (continued)

ADC1 Channel Pin ADC2 Channel Pin ADC3 Channel Pin ADC4 Channel Pin

ADC1 1 PA0 ADC2 1 PA4 ADC3 1 PB1 ADC4 1 PE14

ADC1 2 PA1 ADC2 2 PA5 ADC3 2 PE9 ADC4 2 PE15

ADC1 3 PA2 ADC2 3 PA6 ADC3 3 PE13 ADC4 3 PB12

ADC1 4 PA3 ADC2 4 PA7 ADC3 5 PB13 ADC4 4 PB14

ADC1 5 PF4 ADC2 5 PC4 ADC3 12 PB0 ADC4 5 PB15

ADC12 6 PC0 ADC2 11 PC5 ADC3 13 PE7 ADC4 12 PD8

ADC12 7 PC1 ADC2 12 PB2 ADC3 14 PE10 ADC4 13 PD9

ADC12 8 PC2 ADC3 15 PE11

ADC12 9 PC3 ADC3 16 PE12

ADC12 10 PF2 ADC34 6 PE8

ADC34 7 PD10

ADC34 8 PD11

ADC34 9 PD12

ADC34 10 PD13

ADC34 11 PD14

Table 1: ADC channels and corresponding pins.

It is important that any code run in the callback finishes execution before the next sampling interval.

Otherwise the data may be overwritten with the most recent conversions.

The provided callback function must follow the following prototype:

void (*adc reg callback)(uint16 t *)

The callback is registered with the function void adc callback(void (*callback)(uint16 t *)).

ADC Channels on the Breakout Board

The Green Electronics breakout board has 4 readily accessible analog channels through the defined macros:

GE Ax where “x” is between 1 and 4. Two of the channels (GE A3 and GE A4) are connected directly to ADC

pins on the Discovery board. The other two (GE A1 and GE A2) pass through instrumentation amplifiers

first which allow them to accept a differential signal and reject common-mode noise, making them ideal for

sensitive measurements. The instrument amps have an internal gain of 5 so you may have to

condition the input appropriately and add attenuation if necessary. Additionally to handle

differential signals, the output is referenced to 1.5V (so a differential input of 0V corresponds

to 1.5V). This means that you will have to subtract a fixed offset from the conversion result to get the

actual measured voltage. To see what ADC channels the external pins correspond to, take a look at the

definitions in ge pins.h.

ADC example

Listing 1: ADC example code

/**

* Calculate power using the ADCs

*/

Part 2 continued on next page. . . Page 3 of 7

EE 155/255 Lab #2 Revision 1, October 5, 2017 Part 2 (continued)

5 #include "ge_system.h"

#include "ge_adc.h"

//volts per division

#define V_PER_DIV .0025

10 //amps per division

#define A_PER_DIV .001

//ADC callbacks

void calculate_power(uint16_t *data);

15

f loat power_result;

//initialize ADCs

ge_init();

20

//set sampling frequency at 50kHz

adc_set_fs(50000);

//add callback to channel 1

25 adc_callback(&calculate_power);

//enable ADC1_1 (PA0) and ADC1_2 (PA1)

adc_enable_channels([ADC1_1, ADC1_2], 2);

adc_initialize_channels();

30

//start ADCs

adc_start();

//wait for interrupts

35 while (1) {};

void calculate_power(uint16_t *data) {

uint16_t chan1 = data[0];

uint16_t chan2 = data[1];

40

power_result = (f loat) chan1 * V_PER_DIV * (f loat) chan2 * A_PER_DIV;

}

Part 3

Hardware

Your energy meter should be able to measure 200V and 10A, for a total instantaneous power of 2kW. It

should work on both DC and AC.

Our power and energy meter connects between a power source and a load. The meter senses the load voltage

VL by measuring the voltage between the positive and negative load terminals. The meter senses the load

current by measuring the current that flows from LOAD- to SOURCE-.

Part 3 continued on next page. . . Page 4 of 7

EE 155/255 Lab #2 Revision 1, October 5, 2017 Part 3 (continued)

The schematic for the power and energy meter is shown in Figure 1. The exact component values are left

for you to calculate as a lab exercise. The energy meter measures the current using a current sense resistor

and the on-board instrumentation amplifier. The voltage reading is sensed through a voltage divider with

an offset set by R3 and R4 to allow the measurement of negative voltages.

The current sense resistor RS is on the “component board”, which has terminals for using various passive

high-power parts. All of the circuit except RS, R1, R2, and C1 should be built on a breadboard and powered

from the control module. There are two sets of terminals for RS: the large terminals connect to the source

and load, while the small header terminals connect to the energy meter circuit.

Figure 1: The energy meter sits between a source and a load. It connects between the source and the load

on the negative side.

Two analog inputs of the processor module, ADC3 and ADC1, are used to sense the load voltage and current

respectively. A voltage divider composed of resistors R1 and R2 scales the load voltage VL to the 0-3V input

range of the processor’s ADC. The voltage divider of R3 and R3 should set the zero-input voltage on ADC3

to 1.5V (the center of the ADC range) to allow bipolar (positive and negative) measurement.

The RS = 10mΩ current sense resistor connected between NL and NS converts the 10A load current into

a 100mV voltage. We connect LOAD- to processor ground so that our voltage measurement is the voltage

across the load, which differs from the voltage across the source by the amount dropped across the current

sense resistor. We use one of the provided instrumentation amplifiers (INA827) on the breakout board

to amplify the ±100mV voltage across the sense resistor to fit the 3V input range of the ADC. We use

a differential amplifier here, rather than a single-ended inverting or non-inverting amplifier, to cancel any

noise that exists between LOAD- and the actual processor ground. The gain of the amplifier is 5 by default

but can be set by populating R3 (on the breakout board) and picking the resistor according to the formula:

gain = 5 + (80kΩ

R3).

Since R1 has a high voltage connected to it, the connections on R1 and R2 must be solid and reliable. This

voltage divider should be soldered together. R1 should be at least 100kΩ.

Page 5 of 7

EE 155/255 Lab #2 Revision 1, October 5, 2017 Part 3

Part 4

Filtering

A common and simple approach to smoothing signals is to use a one-pole IIR filter: yn = αyn−1 +βx where

the DC gain is y
x = β

(1−α) .

We want α to be slightly less than one to provide a low-pass response. To keep the implementation fast

and simple, we’ll choose α = 1 − 1
2shift and β = 1, where shift is some integer > 0. This can be written as:

yn = yn−1 − yn−1

2shift + x

The DC gain is y
x = 2shift , so to produce unity gain the output needs to be divided by 2shift . These divisions

can be done with bit shifts if working with integers, so they are fast.

You will need to write filtering functions for your power meter to avoid excess noise on the readings.

Part 5

Calibration

The ADC measurements are not perfect, and the resistor values used in the voltage divider and current-

sense circuit are not exact. The result is that 0V and 0A will not typically produce an ADC value of 2047,

and other voltages will not produce exactly what you expected when you calculated the resistor values. To

correct for this, you need to measure at least two points to find the conversion from ADC counts to voltage

or current.

Since any change to the circuitry could change the offset or scale, the calibration procedure needs to be simple

and automated. To do this, add a special mode to your program to measure 0V, 0A, a known voltage, and

a known current. Make the known values small enough to be safely handled when testing but large enough

to avoid excessive rounding error (a single ADC count is not a good choice). Set CAL VOLTS and CAL CURR

in lab2.h to the values you choose. The defaults are 10V and 3A.

The main loop provided to you uses pushbutton 1 to select among four screens: live measurements, calibrating

offset, and calibrating voltage and current scale factors. Pressing the pushbutton 2 in a calibration screen

causes one of the calibrate *() functions to be called, which is where you should calculate and store the

new calibration data.

Calibration data is stored in EEPROM so you don’t have to recalibrate every time you turn on the meter.

meter init() reads this calibration data from EEPROM and the calibrate *() functions write it back

to EEPROM when it’s updated.

Page 6 of 7

EE 155/255 Lab #2 Revision 1, October 5, 2017 Part 5

Part 6

Testing

Use a heating element as the load. This device is almost purely resistive and can dissipate lots of power

(enough to burn you, so don’t touch it after you start delivering significant power to it). For a DC supply,

use one of the 100V 10A power supplies. Demonstrate that your energy meter correctly measures the power

and energy delivered to the load for three different operating points. Apply a known amount of power for a

known amount of time and verify that the total energy delivered is as predicted. How accurate is your meter?

How much error does it show under heavy load (1kW) and under no load? Use the infrared thermometer to

measure the temperature of the load after delivering 1kJ.

Signoffs

1. Show DC power and energy measurements for at least three different operating points.

Show correct four-quadrant measurements:

1. Exchange the source and the load to invert the current.

2. Exchange the source terminals to invert the voltage.

Page 7 of 7

	Lab2: Energy Meter
	Part 1
	New Code
	Part 2
	Analog to Digital Conversion
	ADC Initialization
	Setting up Channels
	Starting Conversions
	Processing Results
	ADC Channels on the Breakout Board
	ADC example

	Part 3
	Hardware
	Part 4
	Filtering
	Part 5
	Calibration
	Part 6
	Testing
	Signoffs

