1. (a) \[P(\text{luggage reaches } N \text{ successfully}) \]
\[= P(\text{luggage not lost at } 1, 2, \ldots, N-1) \]
\[= \prod_{i=1}^{N-1} P(\text{luggage not lost at } i) \text{ by independence} \]
\[= (1-p)^{N-1} \]

(b) Let \(X \) be the city where the luggage is lost
\[P(X=i \mid \text{luggage lost before } N) \]
\[= P(X=i \mid X \leq N-1) \]
\[= \frac{P(X=i, X \leq N-1)}{P(X \leq N-1)} \]
\[= \frac{P(X=i)}{1 - P(X > N-1)} \]
\[= \frac{(1-p)^{i+1} + p}{1 - (1-p)^{N-1}} \]

Most likely to be lost at 1

(c) can pick any city, new probability of losing luggage reaching safely will be \((1-p)^{N-2} \).
2. Grading - no double penalty
 eg. if 2(a) is incorrect
 but 2(b) is correct occ to your
 answer to 2(a) then no points
 deducted for 2(b).

(a) \(X_i \) uniformly distributed in 1-\(n \)
 \[P(X_i = k) = \frac{1}{n} \quad \forall \ k = 1, \ldots, n \]
 \(Y_j \) - \(\text{Bin}(m, \frac{1}{n}) \)
 \[P(Y_j = k) = \binom{m}{k} \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{m-k} \]
 \(k = 0, 1, \ldots, m \)
 \(j = 1, 2, \ldots, n \)
 5 pts for \(X_i \);
 5 pts for \(Y_j \).

(b) \(Y_j \) is Binomial distributed
 \[E(Y_j) = \frac{m}{n} \quad j = 1, \ldots, n \]
 \[\text{Var}(Y_j) = m \frac{1}{n} \left(1 - \frac{1}{n} \right) \quad j = 1, \ldots, n \]
 5 pts for \(E(Y_j) \);
 5 pts for \(\text{Var}(Y_j) \).

(c) (i) Let \(Z \) = no. of buckets with \(0 \) elements
 \[Z = \sum_{i=1}^{n} Z_i \]
 \[Z_i = \frac{1}{0} \quad \text{if } i^{\text{th}} \text{ bucket has } 0 \text{ elem.} \]
 \[0 \quad \text{otherwise} \]
\[\text{EZ} = \sum_{i=1}^{n} \text{EZ}_i; \quad \text{by linearity of expectation} \]

\[\text{EZ}_i = P(Z_i = 1) \]
\[= P(Y_i = 0) \]
\[= \binom{m}{0} \left(\frac{1}{n} \right)^0 \left(1 - \frac{1}{n} \right)^{m-0} \]
\[= \left(\frac{1}{n} \right)^m \]

\[\therefore \quad \text{EZ} = n \left(\frac{1}{n} \right)^m \]

(ii). \[\text{EZ}_i \] similar to (i),

\[\text{expectation} = nP(Y_i = 1) \]
\[= n \binom{m}{1} \left(\frac{1}{n} \right)^1 \left(1 - \frac{1}{n} \right)^{m-1} \]
\[= \frac{m}{n} \left(1 - \frac{1}{n} \right)^{m-2} \]

(iii). Similar to (i),(ii)

\[\text{expectation} = nP(Y_i > 1) \]
\[= n \left(1 - P(Y_i \leq 1) \right) \]
\[= n \left(1 - P(Y_i = 0) + P(Y_i = 1) \right) \]
\[= n \left(1 - \left(\frac{1}{n} \right)^m \right) - \frac{m}{n} \left(1 - \frac{1}{n} \right)^{m-1} \]

3 pt for (i)
3 pt for (ii)
4 pt for (iii)
(d). \(E = \{ \text{at least one bucket has } > 1 \text{ elem} \} \)
\[= \bigcup_{i=1}^{n} \{ Y_i > 1 \} \]
\[= \{ \text{bucket } i \text{ has } > 1 \text{ elem} \} \]
\[P(E) = P\left(\bigcup_{i=1}^{n} E_i \right) \]
\[\leq \sum_{i=1}^{n} P(E_i) \quad \text{[union bound]} \]
\[= \sum_{i=1}^{n} P(Y_i > 1) \]
\[= \sum_{i=1}^{n} \left(1 - \left(1 - \frac{1}{n}\right)^m - \frac{m}{n} \left(1 - \frac{1}{n}\right)^{m-1} \right) \]
\[= n \left(1 - \left(1 - \frac{1}{n}\right)^m - \frac{m}{n} \left(1 - \frac{1}{n}\right)^{m-1} \right) \]
\[\therefore P(E) \leq n \left[1 - \left(1 - \frac{1}{n}\right)^m - \frac{m}{n} \left(1 - \frac{1}{n}\right)^{m-1} \right] \]

(e). \(P(X_1 = X_2) = \sum_{i=1}^{n} P(X_1 = X_2 | X_1 = i) P(X_1 = i) \)
\[= \sum_{i=1}^{n} \frac{1}{n} \frac{1}{n} \quad \text{[independence]} \]
\[= \frac{1}{n} \]

\[P(\text{at least one other elem. in same bucket as } 1) \]
\[= 1 - P(\text{no elem. in same bucket as } 1) \]
\[= 1 - P(X_2 \neq X_1, X_3 \neq X_1, \ldots, X_m \neq X_1) \]
\[= 1 - \prod_{i=2}^{m} P(X_i \neq X_1) \quad \text{[independence]} \]
\[= 1 - \left(1 - \frac{1}{n}\right)^{m-1} \]
(f). \(P(w=1) = 0 \)
& \(P(w=k) = 0 \) \(\text{for } k \geq n+1 \)

For \(1 \leq k \leq n+1 \),

\(w = k \) if first \(k-1 \) elements go into distinct buckets & \(k^{th} \) element goes into one of those \(k-1 \) buckets

\[P(w=k) = P(x_1, \ldots, x_{k-1} \text{ distinct} \& \text{ } x_k \text{ is one of } k-1 \text{ buckets}) \]

\[= P(x_1, x_2, \ldots, x_{k-1} \text{ distinct}) P(x_k \text{ among } k-1 \text{ buckets}) \]

\[= \frac{1}{n} \frac{n-1}{n} \frac{n-2}{n} \ldots \frac{n-k+2}{n} \times \frac{k-1}{n} \]

\[\text{for } 1 \leq k \leq n+1 \]

Note: that \(P(x_1, \ldots, x_{k-1} \text{ distinct}) \) is similar to the Birthday paradox done in class.
(g) Method I:

Let Z = no. of collisions

$$Z = \sum_{i=1}^{m} Z_i$$

where $Z_i = 1$ if insertion of i^{th} elem. was a collision

$$\therefore \mathbb{E}Z = \sum_{i=1}^{m} \mathbb{E}Z_i = \sum_{i=1}^{m} \mathbb{P}(Z_i=1)$$

Now $\mathbb{P}(Z_i=1) = \sum_{k=1}^{n} \mathbb{P}(Z_i=1|X_i=k) \mathbb{P}(X_i=k)$

$$= \sum_{k=1}^{n} \frac{k}{n}$$

Now $\mathbb{P}(Z_i=1|X_i=k) = \mathbb{P}(\text{at least one of } X_1, \ldots, X_{i-1}\text{ is equal to } k)$

$$= 1 - \left(1 - \frac{1}{n}\right)^{i-1}$$

& $\mathbb{P}(X_i=k) = \frac{k}{n}$

$$\therefore \mathbb{P}(Z_i=1) = \sum_{k=1}^{n} \left[1 - \left(1 - \frac{1}{n}\right)^{i-1}\right] \frac{k}{n}$$

$$= n\left(1 - \left(1 - \frac{1}{n}\right)^{i-1}\right) \frac{1}{n}$$

$$\therefore \mathbb{E}Z = \sum_{i=1}^{m} \left[1 - \left(1 - \frac{1}{n}\right)^{i-1}\right]$$

$$= m - \sum_{i=1}^{m} \left(1 - \frac{1}{n}\right)^{i-1}$$

$$= m - \left[1 + \left(1 - \frac{1}{n}\right) + \ldots + \left(1 - \frac{1}{n}\right)^{m-1}\right]$$

$$= m - \left[1 - \left(1 - \frac{1}{n}\right)^{m}\right] = m - n \left[1 - \left(1 - \frac{1}{n}\right)^{m}\right]$$
(g) **Method 2.**

\[Z = \text{no. of collisions} \]

\[Z = \sum_{i=1}^{n} V_i \]

where \(V_i = \text{no. of collisions in } i^{th} \text{ bucket} \)

According to the definition of "collision"

\[V_i = \begin{cases} 0 & \text{if } Y_i = 0, 1 \\ Y_i - 1 & \text{if } Y_i > 1 \end{cases} \]

\[P(V_i = 0) = P(Y_i = 0) + P(Y_i = 1) \]

\[P(V_i = k) = P(Y_i = k+1) \quad \text{for } k = 1, 2, \ldots m-1 \]

\[\text{E}V_i = \sum_{k=1}^{m-1} P(V_i = k)k \]

\[= \sum_{k=1}^{m-1} k P(Y_i = k+1) \]

\[= \sum_{k=1}^{m-1} k \left(\frac{m}{k+1} \right) \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{m-k-1} \]

\[= \sum_{k=2}^{m} (k-1) P(Y_i = k) \]

\[= \sum_{k=2}^{m} k P(Y_i = k) - \sum_{k=2}^{m} P(Y_i = k) \]

\[= \left[\frac{m}{n} - 1 \cdot \frac{1}{n} \right] \left(1 - \frac{1}{n} \right)^{m-1} \]

\[= \frac{m}{n} - 1 + \left(1 - \frac{1}{n} \right)^m \]

\[\text{E}Z = \sum_{i=1}^{n} \text{E}V_i = n \text{E}V_i = m - n \left[1 - \left(1 - \frac{1}{n} \right)^m \right] \]