1. Suppose X_1, X_2 represent 2 independent rolls of a 6-sided die.

 (a) What is the joint probability mass function of X_1, X_2?

 (b) Calculate the joint probability mass function of Y, X_1 where $Y = \max\{X_1, X_2\}$. Are they independent?

 (c) Find an event which can be described in terms of Y and give all the outcomes in that event.

 (d) Find an event which can be described in terms of X_1, X_2 but not in terms of Y and give all the outcomes in that event.

2. An urn consists of 5 white and 8 red balls. Two balls are randomly picked from this urn. Let X_1 and X_2 be the colors of the two balls. Find the joint probability mass function of X_1 and X_2 when

 (a) The balls are picked with replacement

 (b) The balls are picked without replacement

 Are X_1 and X_2 independent in parts a and/or b?

3. Each of the members of a 7-judge panel independently makes a correct decision with probability 0.7. If the panel's decision is made by the majority rule, what is the probability that the panel makes the correct decision? Given that at most 4 judges agreed, what is the probability that the panel made the correct decision?

4. Find the coefficient of the term $x_2^3x_3^2x_4^5$ in the expansion of $(x_1 + 2x_2 + 3x_3 + 4x_4)^{10}$.