1. Let A and B be independent events. Using the definition of independence, show that the events
 $\ A$ and B^c are independent.

 Note: In general, if $A_1, A_2, ..., A_n$ are independent events, then so are $B_1, B_2, ..., B_n$, where each
 B_i can be either A_i or A_i^c.

2. Prove that if $E_1, E_2, E_3, ..., E_n$ are independent events, then
 \[P(E_1 \cup E_2 \cup ... \cup E_n) = 1 - \left(1 - P(E_1)\right)\left(1 - P(E_2)\right)...\left(1 - P(E_n)\right) \]

3. In this problem, we consider a circuit consisting of components. Each component functions
 properly with probability p, independent of the other components. The circuit works if there is a
 path from A to B with all components working.

 ![Circuit Diagram](image)

 (a) Compute the probability that a circuit with two sub-circuits in series works, if the two
 sub-circuits have probabilities p_1 and p_2 of working.

 (b) Compute the probability that a circuit with n sub-circuits in parallel works, if the sub-
 circuits have probabilities $p_1, p_2, ..., p_n$ of working.

 (c) Compute the probability that the circuit shown in the figure works by decomposing it
 into sub-circuits.

 (d) Given that the circuit shown in the figure works, find the probability that the component
 marked by star functions properly.

4. There are 3 coins in a box. One is a two-headed coin, another is a fair coin, and the third is a biased
 coin that comes up heads 75 percent of the time. When one of the 3 coins is selected uniformly
 at random and flipped, it shows heads. What is the probability that it was the two-headed coin?

5. We deal from a well-shuffled 52-card deck. Calculate the probability that the 3rd card is the first
 king to be dealt.