1. **Memorylessness of geometric random variables**: Consider an experiment of tossing a coin with heads probability p till you see a head. Given that you’ve not seen a head for the first m tosses, what is the probability that you’ll need k more tosses to see the first heads? How does this compare to the probability of seeing the first heads on the kth toss?

2. Compute the probability that a geometric random variable X with probability of success p, is even:
 a. By direct computation
 b. By conditioning on whether $X=1$ or $X>1$

3. A fair coin is continually flipped until heads appears for the 10^{th} time. Let X denote the total number of tosses required.
 a. Compute the probability mass function of X.
 b. Write X as a sum of independent geometric random variables and hence compute its expectation and variance.
 c. Let Y be the number of tails that occur in the process. Write Y in terms of X and find its pmf, expectation and variance.

 Note: For a geometric random variable with success probability p, the expectation and variance are $1/p$ and $(1-p)/p^2$, respectively.

4. Suppose we flip n fair coins to obtain $X_1, X_2, ..., X_n \in \{H, T\}$. Let Y be the number of pairs of consecutive heads (i.e., number of i’s such that $X_i = X_{i+1} = H$). We wish to compute the expectation and variance of Y.
 a. Let Y_i be the indicator function for the event $\{X_i = X_{i+1} = H\}$ for $i = 1..n-1$. Write Y in terms of Y_i’s.
 b. Find $E[Y_i]$ and $E[Y_i^2]$ by computing the pmf of Y_i
 c. Find $E[Y_i Y_j]$ for $i < j$ by computing its pmf. You might want to separate the cases $j = i + 1$ and $j > i + 1$.
 d. Compute the expectation and variance of Y.
