
Line Coding for Digital Communication

How do we transmit bits over a wire, RF, fiber?

◮ Line codes, many options

◮ Power spectrum of line codes, how much bandwidth do they take

◮ Clock signal and synchronization

◮ Common serial communications systems



Line Coding

◮ Goal is to transmit binary data (e.g., PCM encoded voice, MPEG
encoded video, financial information)

◮ Transmission distance is large enough that communication link
bandwidth is comparable to signal bandwidth.

◮ Connections between nearby logic gates have bandwidth greater than
switching speed, so no line coding is needed.

But longer connections use pulse shaping.

◮ Multiple links may be used, with regenerative repeaters

◮ First consider baseband communication (e.g., single twisted pair)



Line Coding Requirements

◮ Small transmission bandwidth

◮ Power efficiency: as small as possible for required data rate and error
probability

◮ Error detection/correction

◮ Suitable power spectral density, e.g., little low frequency content

◮ Timing information: clock must be extracted from data

◮ Transparency: all possible binary sequences can be transmitted



Line Code Examples

on-off (RZ)

polar (RZ)

bipolar/AMI (RZ)

on-off (NRZ)

polar (NRZ)

RZ = return to zero, NRZ = non return to zero



Timing Signal

◮ We want to be able to easily extract the timing information from the
signal.

◮ Consider the polar RZ r(t) shown below. If we take the absolute value
we get a timing signal.

r(t)

|r(t)|

t

t

◮ A line code where it is easy to extract the timing signal is called a
transparent code. This is why many codes are designed the way they are.

◮ In practice the timing signal will be cleaned up by a narrowband
bandpass filter before it is used to extract the bits in the input signal.



Timing Signal (cont.)

◮ Another approach is on-off keying (OOK), with either RZ or NRZ codes.
RZ case is shown here.

r(t)

t

t

t

r(t)− c(t)

c(t)

◮ The RZ OOK signal is a RZ binary signal plus a RZ clock signal.



Timing Signal

◮ NRZ codes can be more problematic. Long strings of 1’s or 0’s can
cause loss of synchronization.

t
r(t)

1 0 0 1 1 1 1 01

◮ Many codes limit the number of consecutive runs of 1’s or 0’s, and force
bit changes after a given number of bits.

◮ The example we’ll look at in the next lab forbids 6 1’s in a row, and
adds an extra zero bit after 5 1’s.

◮ This is another example of bit stuffing that we saw last lecture.



Power Spectral Density of Line Codes

◮ The output distortion of a communication channel depends on power
spectral density of input signal

◮ Input PSD depends on
◮ pulse rate (spectrum widens with pulse rate)

◮ pulse shape (smoother pulses have narrower PSD)

◮ pulse distribution

◮ Distortion can result in smeared channel output; output pulses are
(much) longer tthan input pulses

◮ Intersymbol interference (ISI): received pulse is affected by previous
input symbols



Power Spectral Density (review)

For an energy signal g(t), the energy spectral density is the Fourier
transform of the autocorrelation:

ψg(t) = Rg(t) =

∫

∞

−∞

g(u)g(u + t) du =⇒ |G(f)|2 = F{Rg(t)}

The autocorrelation of a periodic signal is periodic.

Rg(t) =
1

T

∫ T

0

g(u)g(u + t) du =

∞
∑

n=−∞

|Gn|
2ej2πnt

For a power signal, autocorrelation and PSD are average over time. Define

gT (t) = Π(t/T )g(t) =

{

g(t) |t| < T/2

0 |t| > T/2

Then

Rg(t) = lim
T→∞

RgT (t)

T
=⇒ Sg(f) = lim

T→∞

|GT (f)|
2

T



PSD of Line Codes

The PSD of a line code depends on the shapes of pulses that correspond to
digital values. Consider PAM, pulse amplitude modulation.

The transmitted signal is the sum of weighted, shifted pulses.

y(t) =

∞
∑

k=−∞

akp(t− kTb)

where Tb is pulse periox. (Pulses may be wider than Tb.)



PSD of Line Codes (cont.)

PSD depends on pulse shape, rate, and digital values {ak}.

We can simplify analysis by representing {ak} as impulse train.

PSD of y(t) is Sy(f) = |P (f)|2Sx(f).

◮ P (f) depends only on the pulse, independent of digital values or rate.

◮ Sx(f) increases linearly with rate 1/Tb and depends on distribution of
values of {ak}. E.g., ak = 1 for all k has narrower PSD.



PSD of Impulse Train

Let’s find the autocorrelation of an impulse train.

x(t) =

∞
∑

k=−∞

akδ(t− kTb)

In discrete time the signal is

x[n] =

∞
∑

k=−∞

akδ[tn − k]

This is illustrated below.

t

x(t) =
∑

k

akδ(t− kTb)

Tb

1

n

x[n] =
∑

k

akδ[n− k]
ak

ak



PSD of Impulse Train (cont.)

The autocorrelation in discrete time is

Rn = lim
N→∞

1

2N

N
∑

k=−N

akak−n

The continuous time autocorrelation is therefore

Rx(t) =
1

Tb

∞
∑

n=−∞

Rnδ(t− nTb)

Here is a typical impulse train autocorrelation.
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PSD of Impulse Train (cont.)

The power spectral density of impulse train is

F {Rx(t)} = Sx(f) =
1

Tb

∞
∑

n=−∞

Rne
−jn2πfTb

Hence, if we know the discrete time autocorrelation of the transmitted bits,
we know the continuous time power spectral density.

Given a PAM pulse sequence

y(t) =
∞
∑

k=−∞

akp(t− kTb)

the PSD of the encoded signal is

Sy(f) = |P (f)|2

(

1

Tb

∞
∑

n=−∞

Rne
−jn2πfTb

)



PSD of Polar Signaling

◮ 1 → +p(t) , 0 → −p(t)

◮ Since ak and ak+n (n 6= 0) are independent and equally likely,

R0 = lim
N→∞

1

2N

N
∑

k=−N

a2k = lim
N→∞

1

2N

N
∑

k=−N

1 = 1

Rn = lim
N→∞

1

2N

N
∑

k=−N

akak+n = 0

Sy(f) =
|P (f)|2

Tb
R0 =

|P (f)|2

Tb



PSD of Polar Signaling (cont.)

Examples:

◮ NRZ (100% pulse)

p(t) = Π(t/Tb)

P (f) = Tb sinc(πTbf)

|P (f)|2 = T 2
b sinc2(πTbf)

◮ RZ half-width:

p(t) = Π(t/(Tb/2))

P (f) = 1
2
Tb sinc(

1
2
πTbf)

|P (f)| = 1
4
T 2
b sinc2(1

2
πTbf)



PSD of Polar Signaling: Half-Width Pulse

For RZ, Sy(f) =
|P (f)|2

Tb
=

1
4
T 2
b sinc2(1

2
πTbf)

Tb
=
Tb
4

sinc2
(

πTbf

2

)

The bandwidth 2Rb is 4× theoretical minimum of 2 bits/Hz/sec.



PSD of On-Off Keying

◮ OOK looks like

r(t)

t

◮ As we saw earlier, OOK is level-shifted polar signaling:

yon-off(t) =
1
2

(

1 + ypolar(t)
)

◮ R0 is 1
2
because half the time the signals are 1 and half the time they

are 0.
R0 =

(

1
2

)

1 +
(

1
2

)

0 = 1
2

◮ The issue is with all the higher order terms. If we look at Rn, 1/4 of the
time two bits separated by n are both 1, 1/2 the time one is one and one
is zero, and 1/4 the time they are both zero. The autocorrelation is then

Rn =
(

1
4

)

1 +
(

1
2

)

0 +
(

1
4

)

0 = 1
4

This contributes a DC term of 1/4.



PSD of On-Off Keying (cont.)

◮ The DC term results in impulses in the PSD:

Sy(f) =
|P (f)|2

4Tb

(

1 +
1

Tb

∑

n

δ(f − n/Tb)

)

These are undesirable. This corresponds to extra frequency components
that don’t carry information and DC current that just heats up the wires!

◮ We can eliminate impulses by using a pulse p(t) with

P
( n

Tb

)

= 0 , n = 0,±1,±2, . . .

◮ Overall, on-off keying is inferior to polar. For a given average power,
noise immunity is less than for bipolar signaling.

◮ However, OOK is very simple (you just have to gate an oscillator on and
off), so it shows up widely in lower power systems (like key fobs) or very
high frequency systems (where modulation can be difficult).



Split Phase (Manchester) Encoding

◮ As we saw with OOK, line codes with nonzero DC value lower
performance, because a DC component with no information heats up the
wires.

◮ There are two alternatives
◮ Use pulses p(t) that have zero average value (split phase, or Manchester

encoding, now)

◮ Use sequences of pulses that have average values that go to zero (bipolar
signaling, next)

◮ Split phase encoding looks like this:

t

p(t)

t

1 0 1 1 1 0 1 10 1



Split Phase Encoding (cont.)

◮ The PSD is

Sy(f) = |P (f)|2

(

1

Tb

∞
∑

n=−∞

Rne
−jn2πfTb

)

= |P (f)|2
1

Tb

◮ With this PSD, Rn = 0 for n 6= 0.

◮ R0 = 1

◮ However, P (0) = 0

◮ We’ll see what this looks like in a few slides

◮ It is also very easy to get the timing signal from the coding waveform.

◮ This was first introduced with the development of magnetic disk drives
in the late 1940’s and early 1950’s. Read heads were only sensitive to
transitions in magnetization, so this approach guaranteed at least one
transition per bit.

◮ This is widely used in wired ethernet. Also common in RF, particularly in
low power near field RF (NFRF) devices.



Alternate Mark Inversion (Bipolar) Signaling

AMI encodes 0 as 0 V and 1 as +V or −V , with alternating signs.

AMI was used in early PCM systems.

◮ Eliminates DC build up on cable.

◮ Reduces bandwidth compared to polar.

◮ Provides error detecting; every bit error results in bipolar violation.

◮ Guarantees transitions for timing recovery with long runs of ones.

AMI is also called bipolar and pseuodternary.



PSD of AMI Signaling

◮ If the data sequence {ak} consists of equally likely and independent 0’s
and 1s, then the autocorrelation function of the sequence is for R0 is

R0 =

(

1

2

)

1 +

(

1

2

)

0 =
1

2

◮ For R±1 there are four possibilities, 11, 01, 10, and 00.

Since the signs change for successive 1’s, and all the others have
autocorrelations of zero,

R±1 =

(

1

4

)

(−1) +

(

3

4

)

0 = −
1

4

◮ For n = 2, the various permutations of 1’s and 0’s are either zero, or
cancel out and give R2 = 0. This continues for n > 2.



PSD of AMI Signaling (cont.)

◮ Therefore

Sy(f) =
|P (f)|2

Tb

∑

n

Rne
j2πnfTb

=
|P (f)|2

Tb

(

R0 +R−1e
j2πfTb +R1e

−j2πfTb

)

=
|P (f)|2

Tb

(

1

2
−

(

1

4

)

2 cos(2πfTb)

)

=
|P (f)|2

2Tb
(1− cos(2πfTb))

=
|P (f)|2

Tb
sin2(πTbf)

This PSD falls off faster than sinc(πTbf).

◮ The PSD has a null at DC, which aids in transformer coupling.



PSD of AMI Signaling (cont.)



Data Transfer in Digital System

◮ In a synchronous digital system, a common clock signal is used by all
devices.

data + clock

Multiple data signals can be transmitted in parallel using a single clock
signal.

◮ Serial peripheral communication schemes (RS-232, USB, FireWire) use
various clock extraction methods

◮ RS-232 is asynchronous with (up to) 8 data bits preceded by a start bit (0)
and followed by optional parity bit and stop bit (1); clock recovery by
“digital phase-locked loop”

◮ USB needs a real phase-locked loop and uses bit stuffing to ensure enough
transitions

◮ FireWire has differential data and clock pairs; clock transitions only when
data does not



Serial Communication: RS-232 Signaling

RS-232 is a standard for asynchronous serial communication.

Each transition resynchronizes the receiver’s bit clock.



Serial Communication: USB Signaling


