Angle Modulation, III

Lecture topics

▸ FM Modulation

▸ FM Demodulation

▸ Spectral pre-emphasis and de-emphasis to improve SNR

Based on lecture notes from John Gill
US Broadcast FM

- US FM bandwidth specifications:
 - Frequency range: 88.0 – 108.0 MHz
 - Channel width: 200 kHz (100 channels)
 - Channel center frequencies: 88.1, 88.3, …, 107.9
 - Frequency deviation: \(\pm 75 \) kHz

- Signal bandwidth: high-fidelity audio requires \(\pm 15 \) kHz, so bandwidth is available for other applications:
 - Stereo \(L - R \) channel
 - Extra channels
 - Radio data service (RDS)
NBFM Modulation

For narrowband signals, $|k_f a(t)| \ll 1$ and $|k_p m(t)| \ll 1$,

$$\hat{\phi}_{\text{NBFM}} \approx A(\cos \omega_c - k_f a(t) \sin \omega_c t)$$

$$\hat{\phi}_{\text{NBPM}} \approx A(\cos \omega_c - k_f m(t) \sin \omega_c t)$$

We can use a DSB-SC modulator with a phase shifter.
In practice, this modulation will not be perfect, and there will be some amplitude modulation remaining.

To fix this up, follow with a limiter and a bandpass filter. For the case of FM,
Armstrong’s indirect method

Armstrong wanted to generate WBFM using NBFM and frequency multipliers. Suppose we have a nonlinear device with the response

\[y(t) = a_0 + a_1 x(t) + a_2 x^2(t) + \cdots + a_n x^n(t) \]

Let \(a(t) = \int_{-\infty}^{t} m(u) \, du \) and \(x(t) = A \cos(\omega_c t + k_f a(t)) \). Then

\[y(t) = a_0 + a_1 \cos(\omega_c t + k_f a(t)) + \cdots + a_n (\cos(\omega_c t + k_f a(t)))^n \]

A bandpass filter isolate the FM signal with carrier frequency \(n\omega_c \).
FM Demodulation

- Frequency-selective filter
 - RC high-pass filter
 \[H(f) = \frac{j2\pi RC}{1 + j2\pi RC} \approx j2\pi RC \quad (2\pi RC \ll 1) \]
 - RLC circuit with carrier frequency \(\omega_c < \omega_0 = 1/\sqrt{LC} \)

- Differentiator

- Slope detection

- Zero-crossing detectors

- Phase-locked loop (not discussed today)
Derivative Theorem for Fourier Transform

If $G(f)$ is the Fourier transform of $g(t)$, then

$$\frac{dg(t)}{dt} \quad \Rightarrow \quad j2\pi f \; G(f)$$

and

$$\int_{-\infty}^{t} g(\tau) \, d\tau \quad \Rightarrow \quad \frac{G(f)}{j2\pi f} + \frac{1}{2} G(0) \delta(f)$$

“Proof”:

$$\frac{dg(t)}{dt} = \frac{d}{dt} \int_{-\infty}^{\infty} G(f) e^{j2\pi ft} \, dt$$

$$= \int_{-\infty}^{\infty} \frac{d}{dt} G(f) e^{j2\pi ft} \, dt = \int_{-\infty}^{\infty} j2\pi f \; G(f) \; e^{j2\pi ft} \, dt$$

By the Fourier inversion theorem, $j2\pi f \; G(f)$ is transform of $g'(t)$.
Slope-Detecting Filter

Information in an FM signal is contained in the instantaneous frequency,

$$\omega_i(t) = \omega_c + k_f m(t)$$

We can extract $$\omega_i$$ using a slope-detecting filter, where

$$|H(f)| = a2\pi f + b$$
FM Demodulator and Differentiator

\[A[\omega_c + k_f m(t)] \]

(b)

\[\varphi_{FM}(t) \xrightarrow{d/dt} \varphi_{FM}(t) \xrightarrow{\text{Envelope detector}} A[\omega_c + k_f m(t)] \]
Envelope Detection using Ideal Differentiator

If $\Delta \omega = k_f m_p < \omega_c$ we can use envelope detection.

$$
\dot{\varphi}_{FM}(t) = \frac{d}{dt} \left(A \cos \left(\omega_c t + k_f \int_{-\infty}^{t} m(u) \, du \right) \right)
$$

$$
= -A \sin \left(\omega_c t + k_f \int_{-\infty}^{t} m(u) \, du \right) (\omega_c + k_f m(t))
$$

$$
= A(\omega_c + k_f m(t)) \sin \left(\omega_c t + k_f \int_{-\infty}^{t} m(u) \, du - \pi \right)
$$

Envelope of $\dot{\varphi}_{FM}(t)$ is $A(\omega_c + k_f m(t))$. Important that A is constant.
FM Detection Circuits

RC high-pass filter.

The transfer function is

\[H(f) = \frac{j2\pi RC f}{1 + j2\pi RC f} \approx j2\pi RC f \quad (2\pi RC \ll 1) \]

The impulse response is

\[h(t) = \delta(t) - e^{t/RC} u(t) \]
Advantages of FM

FM is less susceptible to amplifier nonlinearities. If input is

\[x(t) = A \cos(\omega_c t + \psi(t)) \]

and the output is

\[y(t) = a_0 + a_1 x(t) + a_2 x^2(t) + \cdots \]
\[= c_0 + c_1 \cos(\omega_c t + \psi(t)) + c_2 \cos(2\omega_c t + 2\psi(t)) + \cdots \]

The extra terms have spectrum outside the carrier signal band. They will be blocked by bandpass filter.

Nonlinearities in AM cause signal distortion. For \(y(t) = ax(t) + bx^3(t) \),

\[y(t) = am(t) \cos \omega_c t + bm^3(t) \cos^3 \omega_c t \]
\[= (am(t) + \frac{3}{4} bm^3(t)) \cos \omega_c t + \frac{1}{4} b \cos 3\omega_c t \]

FM is preferred for high power applications, such as microwave relay towers.
Advantages of FM (cont.)

FM can adjust to rapid fading (change of amplitude) using AGC (automatic gain control)

FM is less vulnerable to signal interference from adjacent channels. Suppose interference is \(I \cos(\omega_c + \omega)t \). Then received signal is

\[
\begin{align*}
 r(t) &= A \cos(\omega_c t) + I \cos(\omega_c t + \omega)t \\
 &= (A + I \cos(\omega t)) \cos(\omega_c t) - I \sin(\omega t) \sin(\omega_c t) \\
 &= E_r(t) \cos(\omega_c t + \psi(t))
\end{align*}
\]

where

\[
\psi(t) = \tan^{-1}\left(\frac{I \sin(\omega t)}{A + I \cos(\omega t)}\right) \approx \frac{I}{A} \sin(\omega t) \quad (I \ll A)
\]

The output of an ideal frequency modulator is \(\dot{\psi}(t) \) for FM is

\[
y_d(t) = \frac{I \omega}{A} \cos(\omega t),
\]

which is inversely proportional to amplitude \(A \).
Noise and FM

Suppose that the power spectrum of noise is flat over an FM channel. E.g., white noise has constant power spectrum

\[
H_Z(f) = \frac{N_0}{2}
\]

The power of the noise in a frequency band of width \(2B\) is

\[
2 \int_{f_c-B}^{f_c+B} \frac{N_0}{2} df = 2BN_0
\]

The transfer function for FM demodulator satisfies \(|H(f)| = af + b\). This filter increases noise at higher frequencies.

We can reduce high frequency noise by using preemphasis/deemphasis.
FM Preemphasis and Deemphasis

Pre-emphasis: RLC high pass filter. De-emphasis: RC low pass filter.
The linear preemphasis range is $f_1 = 2.1$ kHz to $f_2 = 30$ kHz. The preemphasis filter has transfer function

$$H_p(f) = \frac{f_2}{f_1} \frac{f_1 + j2\pi f}{f_2 + j2\pi f}$$

If $f \ll f_1$ then $H_p(f) \approx 1$.

If $f_1 \ll f \ll f_2$ then

$$H_p(f) \approx \frac{j2\pi f}{f_1}$$

which is a differentiator!

The corresponding deemphasis filter has transfer function.

$$H_d(f) = \frac{f_1}{j2\pi f + f_1} \approx \frac{1}{H_p(f)}$$
FM Preemphasis and Deemphasis Filters
Next time

- Friday Lab: decoding commercial FM signals
- Next Monday: Dish Tour (meet at gate at 10)
- Next Wednesday: Sampling, analog multiplexing methods
- Next Friday Lab: Tour of the HF station in Packard
 Midterm is posted, due one week later