Lecture #7: Fractals!

Paul Hartke
Phartke@stanford.edu
Stanford EE183
April 24, 2002

Lab #1

• Due TODAY at midnight
 – You can demo anytime before then
• I’ll be in the lab around 11pmish for demos
 – Or whenever I get back from the A’s game… 😊
• Writeup due next Monday at midnight
Mandelbrot Fractal

- The Mandelbrot set is the set of points in the complex c-plane that do not go to infinity when iterating $z_{n+1} = z_n^2 + c$ starting with $z = 0$. One can avoid the use of complex numbers by using $z = x + iy$ and $c = a + ib$, and computing the orbits in the ab-plane for the 2-D mapping

 $\begin{align*}
 x_{n+1} &= x_n^2 - y_n^2 + a \\
 y_{n+1} &= 2x_ny_n + b
 \end{align*}$

 with initial conditions $x = y = 0$ (or equivalently $x = a$ and $y = b$). It can be proved that the orbits are unbounded if $|z| > 2$ (i.e., $x^2 + y^2 > 4$).

 - http://www.olympus.net/personal/dewey/mandelbrot.html

Julia Set

- Very similar except for the next state generation except the (a,b)
 - these are constants throughout the calculation

- Sample code for matlab and perl is in
 - http://www.stanford.edu/class/ee183/fractals/
 - Note: the perl output looks funny since ascii character dimensions are not proportional
Lab 2

• Display the Mandelbrot Fractal on the VGA monitor
• Use the Sega Controller to select the constant for the Julia set and then draw it
• Calculate both from –2 to 2 on a 64x64 grid with 4 bit color
 – Just like the perl and matlab files
• Demonstration:
• Create a Julia Animation

Game Plan

• Reuse concepts from Lab1
 – Sega Gamepad frontend
 – Dual Port BRAM to calculate into one port and VGA scans the other port
 • Only need 1 DPBRAM because we don’t need any state to compute from
 – Cursor location to select Julia constant
Separation of Control & Datapath

• You have already been doing this
 – Remember the tutorial

```
ControlIn  State Machine  ControlOut
     ↓               
DataIn    DataPath      DataOut
```

Implementation

• Control is random logic
 – Synthesize it
• Datapath is regularly structured logic
 – Array implementations or bitslice
 – Aim for maximum frequency by minimizing wire lengths
 – Most likely will not fit in a single clock cycle
 • Pipeline it!
We need multipliers!

- All other elements in datapath we know how to build..
- We discussed multipliers in EE121…
Multipliers

• Repeated Addition

Initial Architecture
More Aggressive Multipliers Summary

- Lots of clever architectures out there. They all do the same thing—multiply!
- Consider routing delay in addition to logic delay.
Fractions?

• Those were all Integer Multipliers
 – Signed operands in two’s complement work fine
• Our algorithm calls for fractional arithmetic
 – Normally implemented as Floating Point Math
 • Very painful
 – So use Fixed Point Math
 • Assume numbers are always in the form: X.Y where X and Y have constant width

Fixed Point Math

• Addition/Subtraction as normal
• Multiplication requires an arithmetic right shift after the computation
 – Divide to remove the least significant digits
 • Restore the location of the decimal point
 – Verilog >> is logical shift
 • Construct Arithmetic Shift from conditional (?:)
• Aside: Verilog 2000 has >>>/<<< as arithmetic shifts.
Fixed Point Partition?

- How big should the integer part or fractional part be?
 - Want to minimize these since multipliers grow quickly in size and latency with operand size
 - Don’t want them so small that overflow of the integer part occurs (results in aliasing) or that the fractional part has large quantization error
- We stop the loop when magnitude is greater than 4
 - Use that knowledge to approximate size of intermediate operands

How to Pipeline?

- Create the datapath in a single module
 - Use the coregen multiplier
 - *Register all inputs and outputs*
 - Implement and then run the static timing tool
 - Add a pipe stage
 - Iterate
- Note that the coregen multiplier has several pipeline options
Create a Julia Set Animation

- How long does each Julia image take to create?
- \((64 \times 64 \times 64 \times 7 \times 1/50e6) = 0.036s\)
- So can calculate them in real time
- Would double buffering help?
 - Not sure…

http://homepages.enterprise.net/scruss/
julia_anim.html

Julia Set Animation Constants

- Previous gif: “It's a sequence of Julia sets for the points at 5° intervals around the unit circle.”
 - Why should they be on a circle? What other trajectories would be “interesting?”
- Could calculate these values on the fly
 - Use the Sine-Cosine generator in Coregen
- Or precompute the values and store them in a ROM
- Use the CORDIC algorithm
 - http://www.opencores.org/projects/cordic/