Synchronization in Digital
Logic Circuits

Ryan Donohue
Rdonohue @yahoo.com

Synchronization: Why care?

#Digital Abstraction depends on all
signals in a system having a valid logic
state

@®Therefore, Digital Abstraction depends
on reliable synchronization of external
events

The Real World

#Real World does not respect the Digital
Abstraction!

= Inputs from the Real World are usually
asynchronous to your system clock

= Inputs that come from other ‘ ‘

synchronous systems are based — 1 srorr ——
on a different system clock, which Gigabit
is typically asynchronous to your — —{ ‘ewier F—

system clock | |

Metastability

#When asynchronous events enter your
synchronous system, they can cause bistables
to go into metastable states

#Every real life bistable (such as a D-latch) has
a metastable state

'1' state

CLK Vaut VTC of—»
series inverters
D L q ™~
Vin Vout VTC of
metastable feedback
state

'0' state Vin

Quick Metastability Review

—_—
.om ‘0" state
FF in 'normal’ states FF in metastable state
#0nce a FF goes metastable (due to a setup

time violation, say) we can't say when it will
assume a valid logic level or what level it
might eventually assume

#The only thing we know is that the probability
of a FF coming out of a metastable state
Increases exponentially with time

Mean Time Between Failures

#For a FF we can compute its MTBF,
which is a figure of merit related to
metastability.

t/t t. resolution time (time since clock edge)
(r) f sampling clock frequency

a asynchronous event frequency
fa t and T, FF parameters

MTBF(t,) = £

(]

For a typical .25um
ASIC library FF B
t =2.3ns FOf;_- i&%“g“z’ MTBF = 20.1 days
t =0.31ns -

T, =9.6as

{Synchronizer Requirements

#®Synchronizers must be designed to
reduce the chances system failure due
to metastability

#Synchronizer requirements
= Reliable [high MTBF]
= Low latency [works as quickly as possible]
= Low power/area impact

Single signal Synchronizer

Traditional synchronizer
= SIG is asynchronous, and META might go
metastable from time to time

= However, as long as META resolves before the
next clock period SIG1 should have valid logic
levels

= Place FFs close together to allow maximum time
for META to reslove

cw | L1 LI 1

SIG META SIG1

D Q D Q SIG X

> > META

SIG1 X

Single Synchronizer analysis

#MTBF of this system is roughly:

MTBF(t,) = e (tr/t) x _€ (tr/t) For atypical .25um
' T fa T f ASIC library FF
t =2.3ns i
MTBF = 9.57x10% years t'=0alns Forf= ZI].-I\(;ICI)-|MHZ,
Age of Earth = 5x10° years T, =9.6as a= z

#Can increase MTBF by adding more series
stages

META SIG1 SIG2

D Q D Q D Q

- |—> r> |—>

Flip Flop design is important?

4 Dynamic FFs not suitable for synchronizers
since they have no regeneration

aK ak B
1 1 o 39
D—I \—{ I)TI L| [>IQ -
I I
CMOS Dynamic FF TSFF (Svenson)

#Special ‘'SYNC’ FFs should be used for the
primary synchronizer if available

libraries

META

SYNC Flip Flop

4 SYNC Flip Flops are available in some ASIC

Vout

SIG1

= Better MTBF characteristics due to high gain in the
feedback path

= Very large (5x regular FF) and very high power

VTC of 1 stat
SYNC FF 7 Siate
series inverters !

E[VTC of
|

regular FF
series inverters

'0" state

Vin

SIG

Synchronization Pitfall

#Never synchronize the same signal in multiple
places! Inconsistency will result!

I

_<

CLK

SIG1

I

SIG2

{Bus Synchronization

#Obvious approach is to use single signal
synchronizers on each bit

#WRONG!

SIG[0] b o b Q SIG1[0] l l l
i N |_> ok __ [LI LTI
p— SIG[0] X

SIG[1] X
SIG[1] SIG1[1]
D Q D Q SIG1[0] X
>SYNC |_> SIG1[1] X

Handshaking is the Answer

_E
#Need a single point of synchronization for the
entire bus
ok _ [L[LI L I 1L I LI 1
SIG[1:0] X =
\
REQ - /_\\I /_,..»\._\
ACK o/ ™
SIG 2
REQ
Hand CLKLD lg Hand
shaking shaking
FSM ACK FSM
1 do
A 4

CLK1 CLK2

{Handshaking Rules

Sender outputs data and THEN asserts REQ
Receiver latches data and THEN asserts ACK

Sender deasserts REQ, will not reassert it
until ACK deasserts

#Receiver sees REQ deasserted, deasserts ACK
when ready to continue

cew | L L b L LT 1

SIG[1:0] X~
N
REQ "> /—~\I _/_,»\r.l
ACK 2 N

Alternate Handshaking Scheme

#Previous example is known as 4-phase
handshaking

#2-phase (or edge based) handshaking is also
suitable

= Sender outputs data and THEN changes state of
REQ, will not change state of REQ again until after
ACK changes state.

= Receiver latches data. Once receiver is ready for
more it changes state of ACK.
4 2-phase requires one bit of state be kept on
each side of transaction. Used when FFs are
inexpensive and reliable reset is available.

High Bandwidth solutions

®Handshaking works great, but reduces
bandwidth at the clock crossing
interface because each piece of data
has many cycles of series handshaking.

#Correctly designed FIFOs can increase
bandwidth across the interface and still
maintain reliable communication

Abstract FIFO design

#ldeal dual port FIFO writes with one
clock, reads with another

#FIFO storage provides buffering to help
rate match load/unload frequency

#Flow control needed in case FIFO gets
totally full or totally empty

DATA_IN, DATA_OUT

FULL EMPTY

CLK1 — — CLK2

FIFO in detalil

#FIFO of any significant
size is implemented using
an on-chip SRAM

Dual Port
SRAM

PORT1 PORT2

#SRAM must be dual- s fued | | e

EMPTY

DATAIN | FIFO |WR_DATA RD_DATA | FIFO

ported for our design | weme
[have two independent
ports]

#\We will use a write
pointer to determine the
write address, and a read
pointer to determine the
read address

READ
LOGIC

DATA_OUT
[—

CLK2

FIFO pointer control

#FIFO is managed as a "
circular buffer using
pointers.

!
)
;’
#First write will occur at |
address 00h. Next write !
‘\
\
\

will occur at 01h.

After writing at FFh, next |

write will wrap to 00h. L
#Reads work the same way.

First read will occur at
address 00h.

Wﬂﬁ n bits of data

n bits of data

n bits of data

n bits of data

n bits of data

n bits of data

FFh
FEh

01h
00h

10

{FIFO pointers and flow control

Generation of FULL and EMPTY signals.

= FIFO is FULL when write pointer catches read
pointer
always @(posedge clk1)
FULL <= (WR_PNTR == RD_PNTR) && ((OLD_WR_PNTR +1 == RD_PNTR) || FULL)

= FIFO is empty when read pointer catches write
pointer
always @(posedge clk2)
EMPTY <= (WR_PNTR == RD_PNTR) && ((OLD_RD_PNTR + 1 == WR_PNTR) || EMPTY)

#Write pointer and read pointer must never
pass each other.

= Write passing read overwrites unread data
= Read passing write re-reads invalid data

LFIFO in detail

#\We have a problem!

Dual Port
SRAM

PORT1 PORT 2

[

FULL WR_PTR RD_PTR

DATA_IN | FIFO |WR DATA Rb_DATA_| FIFO

WRITE READ

LOGIC e T LOGIC
e~

EMPTY
DATA_OUT
—»

l CLK1 CLKZI

To generate FULL/EMPTY conditions the write
logic needs to see the read pointer and the read
logic needs to see the write pointer!

{Pointer Synchronization

4 0ur pointers change in a very specific way
(when they change, they increment by 1)

= Applying a traditional two stage FF synchronizer on
each bit of a binary pointer could cause a wildly
invalid pointer value to be produced

= Gray coding the pointer value means at most one
bit will change per cycle — we can only be ‘off by

one
Binary Gray CLK

000 000

001 001 BIN[2:0]

010 011 .
£ o 010 BIN_S[2:0]

100 110 GRAY[2:0]

101 111

110 . 101 GRAY._S[2:0]

111

100

011X 100

011 Y XXX X 100

010 X_110

010 X110 or 010X 110

Pointer Synchronizer

Pointer is stored in gray code.

A standard single bit

synchronizer is used on each
bit of PTR_OUT. At most one

bit changes per cycle!

#We can still do binary math to

increment the pointer.

module bin2gray (bin,gray);
parameter SIZE = 4;

input [SIZE-1:0] bin;

output [SIZE-1:0] gray;

reg [SIZE-1:0] gray;

always @(bin)
gray = (bin >> 1) ~ bin;

endmodule

module gray2bin (gray,bin);
parameter SIZE = 4;

input [SIZE-1:0] gray;

L 1

gray2bin

:9— bin2gray D

output [SIZE-1:0] bin;
reg [SIZE-1:0] bin;

CLK j

integer i;
PTR_OUT

always @(gray)
for (i=0; i<SIZE; i=i+1)

bin[i] = ~(gray >> i);

endmodule

12

{Pointer Synchronizer pitfall

#Write and read pointers need to be registered
in gray code as shown on previous slide.

#Don’'t be tempted to cheat and register
pointers in binary. What's wrong with the
synchronizer shown below?

PTR_IN PTR_OUT
+

+
bin2gray D Q D Q

o A |1

gray2bin

Answer to pitfall

PTR_IN PTR_OUT
+

+ Vi
bin2gray D Q D Q

ray2bin
SYNC grey

S >

Combinational logic frequently contains
hazards at the output (non fully covered
Karnaugh map)

Avoid this problem by using a registered
value of PTR_IN

CLK [L1 LI I
PTR_IN[2:0] 011 X 100
PTR_IN_G[2:0] 010) 110
™ LOGIC HAZARD (unknown value)

13

{Pointer math pitfall

4#When our pointer synchronizer goes
metastable our new pointer value may not be
updated until one cycle later.

#We need to be conservative when generating
FULL and EMPTY signals to reflect this.

= Typically FULL = 1 when WRITE catches READ.
We need FULL = 1 when WRITE catches READ-1.

= Typically EMPTY = 1 when READ catches WRITE.

We need EMPTY = 1 when READ catches WRITE-1.

Final Synchronizer FIFO Design

Dual Port
SRAM

PORTL PORT2
44 A

FULL WR_PTR RD_PTR EMPTY
IFO A
DATA_IN FIF WR_DATA RIp_DATA FIF DA’ ou
IFO

WRITE READ

LOGIC | > SY;NC LOGIC
CLK2

l CLK1 A‘Egc_i* CcLK2 l

CLK1

Y

Y

Works for any phase/frequency relationship
between CLK1 and CLK2

14

{Mesosynchronous Designs

4 When two systems of bounded frequency
need communicate, open loop
synchronization circuits can be used (no ACK)

ok _ [L [L L1 L

SIG[1:0] X ~.
\

REQ >/ SR O O s

Hand
shaking
FSM

Assume:
CLK2= CLK1 * 5%

shaking
FSM

CLK1 CLK2

Mesosynchronous Tradeoffs

Benefits to mesosynchronous designs
= Less synchronization circuitry
= Synchronizer might have lower latency vs. full 4-
phase handshaking
Costs of mesosynchronous designs

= Synchronizer only works at certain frequency
ratios (may hamper bringup/debug)

= Intolerant of spec mistakes (maybe that unload
frequency was supposed to be +- 50%!)

15

{Words to the wise

4 Be wary of synchronizer schemes designed by
others

= Synopsys Designware DWO04 _sync multi-bit
synchronizer DOES NOT WORK as a synchronizer

= Synthesizers might use dynamic FFs as
synchronizers — they don’t know the difference.

= Auto-placement tools must be told to place
synchronizer FF pairs close together

BE PARANOID

Conclusions

Synchronizers are important. Synchronization
failure is deadly and difficult to debug

4 Synchronization requires careful design. Most
CAD and logic tools CANNOT catch bad
synchronizer designs.

Design of synchronizer depends on
performance level needed. Basic
synchronizer of back-to-back FFs is the core
design all others are based on.

16

