
1

Synchronization in Digital
Logic Circuits

Ryan Donohue
Rdonohue@yahoo.com

Synchronization: Why care?

Digital Abstraction depends on all
signals in a system having a valid logic
state
Therefore, Digital Abstraction depends
on reliable synchronization of external
events

2

The Real World

Real World does not respect the Digital
Abstraction!
n Inputs from the Real World are usually

asynchronous to your system clock

8 PORT
Gigabit

Ethernet
 Switch

n Inputs that come from other
synchronous systems are based
on a different system clock, which
is typically asynchronous to your
system clock

Metastability
When asynchronous events enter your
synchronous system, they can cause bistables
to go into metastable states
Every real life bistable (such as a D-latch) has
a metastable state

Vin

Vout

VTC of
feedback

VTC of
series inverters

'0' state

'1' state

metastable
state

Vin Vout
D Q

CLK

0

1Vin VoutD Q

CLK

3

Quick Metastability Review

Once a FF goes metastable (due to a setup
time violation, say) we can’t say when it will
assume a valid logic level or what level it
might eventually assume
The only thing we know is that the probability
of a FF coming out of a metastable state
increases exponentially with time

FF in 'normal' states FF in metastable state

'1' state'0' state '0' state '1' state

Mean Time Between Failures

For a FF we can compute its MTBF,
which is a figure of merit related to
metastability.

e
(tr/τ)

Tofa
MTBF(tr) =

tr resolution time (time since clock edge)

τ and To FF parameters

f sampling clock frequency
a asynchronous event frequency

For a typical .25um
ASIC library FF

τ = 0.31ns
To = 9.6as

tr = 2.3ns
For f = 100MHz,

a = 1MHz
MTBF = 20.1 days

4

Synchronizer Requirements

Synchronizers must be designed to
reduce the chances system failure due
to metastability
Synchronizer requirements
n Reliable [high MTBF]
n Low latency [works as quickly as possible]
n Low power/area impact

Single signal Synchronizer
Traditional synchronizer
n SIG is asynchronous, and META might go

metastable from time to time
n However, as long as META resolves before the

next clock period SIG1 should have valid logic
levels

n Place FFs close together to allow maximum time
for META to reslove

D Q D Q
SIG META

CLK

SIG1
SIG

META

SIG1

CLK

5

Single Synchronizer analysis

MTBF of this system is roughly:

e (tr/τ)

Tof
e (tr/τ)

Tofa
MTBF(tr) = x

Can increase MTBF by adding more series
stages

For a typical .25um
ASIC library FF

τ = 0.31ns
To = 9.6as

tr = 2.3ns For f = 100MHz,
a = 1MHz

MTBF = 9.57x1010 years
Age of Earth = 5x109 years

D Q D Q
SIG META SIG1

D Q
SIG2

CLK

Flip Flop design is important?

Dynamic FFs not suitable for synchronizers
since they have no regeneration

Special ‘SYNC’ FFs should be used for the
primary synchronizer if available

D Q

CLK CLK
D Q

φ

φ

φ

φ

CMOS Dynamic FF TSFF (Svenson)

6

SYNC Flip Flop
SYNC Flip Flops are available in some ASIC
libraries
n Better MTBF characteristics due to high gain in the

feedback path
n Very large (5x regular FF) and very high power

D Q D Q
SIG META

CLK

SIG1

SYNC

Vin

Vout

VTC of
regular FF

series inverters

VTC of
SYNC FF

series inverters

'0' state

'1' state

Synchronization Pitfall

Never synchronize the same signal in multiple
places! Inconsistency will result!

D Q D Q
SIG1

SYNC

D Q D Q
SIG2

SYNC

SIG
CLK

CLK

7

Bus Synchronization

Obvious approach is to use single signal
synchronizers on each bit
WRONG!

D Q D Q
SIG1[0]

SYNC

D Q D Q
SIG1[1]

SYNC

SIG[0]

CLK

CLK

SIG[1]

SIG[0]

SIG1[0]

CLK

SIG[1]

SIG1[1]

Handshaking is the Answer
Need a single point of synchronization for the
entire bus
CLK

SIG[1:0]

ACK

REQ

Hand
shaking

FSM

Hand
shaking

FSM

D QD Q

DQDQ

2SIG

REQ

ACK

CLK1 CLK2

CLK1

CLK2

8

Handshaking Rules

Sender outputs data and THEN asserts REQ
Receiver latches data and THEN asserts ACK
Sender deasserts REQ, will not reassert it
until ACK deasserts
Receiver sees REQ deasserted, deasserts ACK
when ready to continue
CLK

SIG[1:0]

ACK

REQ

Alternate Handshaking Scheme

Previous example is known as 4-phase
handshaking
2-phase (or edge based) handshaking is also
suitable
n Sender outputs data and THEN changes state of

REQ, will not change state of REQ again until after
ACK changes state.

n Receiver latches data. Once receiver is ready for
more it changes state of ACK.

2-phase requires one bit of state be kept on
each side of transaction. Used when FFs are
inexpensive and reliable reset is available.

9

High Bandwidth solutions

Handshaking works great, but reduces
bandwidth at the clock crossing
interface because each piece of data
has many cycles of series handshaking.
Correctly designed FIFOs can increase
bandwidth across the interface and still
maintain reliable communication

Abstract FIFO design

Ideal dual port FIFO writes with one
clock, reads with another
FIFO storage provides buffering to help
rate match load/unload frequency
Flow control needed in case FIFO gets
totally full or totally empty

DATA_IN DATA_OUT

FULL EMPTY

CLK1 CLK2

10

FIFO in detail
FIFO of any significant
size is implemented using
an on-chip SRAM
SRAM must be dual-
ported for our design
[have two independent
ports]
We will use a write
pointer to determine the
write address, and a read
pointer to determine the
read address

Dual Port
SRAM

FIFO
WRITE
LOGIC

FIFO
READ
LOGIC

RD_PTRWR_PTR

WR_DATA RD_DATA

CLK1 CLK2

FULL EMPTY

DATA_IN DATA_OUT

PORT1 PORT2

FIFO pointer control

FIFO is managed as a
circular buffer using
pointers.
First write will occur at
address 00h. Next write
will occur at 01h.
After writing at FFh, next
write will wrap to 00h.
Reads work the same way.
First read will occur at
address 00h.

FEh
FFh

WRITE
PNTR

READ
PNTR

00h
01h

n bits of data
n bits of data

n bits of data
n bits of data
n bits of data
n bits of data

11

FIFO pointers and flow control
Generation of FULL and EMPTY signals.
n FIFO is FULL when write pointer catches read

pointer

n FIFO is empty when read pointer catches write
pointer

Write pointer and read pointer must never
pass each other.
n Write passing read overwrites unread data
n Read passing write re-reads invalid data

always @(posedge clk1)
FULL <= (WR_PNTR == RD_PNTR) && ((OLD_WR_PNTR + 1 == RD_PNTR) || FULL)

always @(posedge clk2)
EMPTY <= (WR_PNTR == RD_PNTR) && ((OLD_RD_PNTR + 1 == WR_PNTR) || EMPTY)

FIFO in detail
We have a problem!

To generate FULL/EMPTY conditions the write
logic needs to see the read pointer and the read
logic needs to see the write pointer!

Dual Port
SRAM

FIFO
WRITE
LOGIC

FIFO
READ
LOGIC

RD_PTRWR_PTR

WR_DATA RD_DATA

CLK1 CLK2

FULL EMPTY

DATA_IN DATA_OUT

PORT1 PORT 2

12

Pointer Synchronization

Our pointers change in a very specific way
(when they change, they increment by 1)
n Applying a traditional two stage FF synchronizer on

each bit of a binary pointer could cause a wildly
invalid pointer value to be produced

n Gray coding the pointer value means at most one
bit will change per cycle – we can only be ‘off by
one’

000
001
010
011
100
101
110
111

000
001
011
010
110
111
101
100

Binary Gray CLK

BIN[2:0]

GRAY[2:0]

011

010 110

100

BIN_S[2:0] 011

GRAY_S[2:0] 010 110 or 010

100

110

XXX

Pointer Synchronizer
Pointer is stored in gray code.
A standard single bit
synchronizer is used on each
bit of PTR_OUT. At most one
bit changes per cycle!
We can still do binary math to
increment the pointer.

D Q

CLK

PTR_OUT

1

bin2gray

gray2bin

module bin2gray (bin,gray);

parameter SIZE = 4;

input [SIZE-1:0] bin;
output [SIZE-1:0] gray;
reg [SIZE-1:0] gray;

always @(bin)
 gray = (bin >> 1) ^ bin;

endmodule

module gray2bin (gray,bin);

parameter SIZE = 4;

input [SIZE-1:0] gray;
output [SIZE-1:0] bin;
reg [SIZE-1:0] bin;

integer i;

always @(gray)
for (i=0; i<SIZE; i=i+1)
 bin[i] = ^(gray >> i);

endmodule

13

Pointer Synchronizer pitfall

Write and read pointers need to be registered
in gray code as shown on previous slide.
Don’t be tempted to cheat and register
pointers in binary. What’s wrong with the
synchronizer shown below?

D Q D Q
PTR_IN

CLK

PTR_OUT

SYNC
bin2gray gray2bin

Answer to pitfall

Combinational logic frequently contains
hazards at the output (non fully covered
Karnaugh map)
Avoid this problem by using a registered
value of PTR_IN

D Q D Q
PTR_IN

CLK

PTR_OUT

SYNC
bin2gray gray2bin

PTR_IN[2:0] 011 100

CLK

PTR_IN_G[2:0] 010 110

LOGIC HAZARD (unknown value)

14

Pointer math pitfall

When our pointer synchronizer goes
metastable our new pointer value may not be
updated until one cycle later.
We need to be conservative when generating
FULL and EMPTY signals to reflect this.
n Typically FULL = 1 when WRITE catches READ.

We need FULL = 1 when WRITE catches READ-1.
n Typically EMPTY = 1 when READ catches WRITE.

We need EMPTY = 1 when READ catches WRITE-1.

Final Synchronizer FIFO Design

Works for any phase/frequency relationship
between CLK1 and CLK2

Dual Port
SRAM

FIFO
WRITE
LOGIC

FIFO
READ
LOGIC

RD_PTRWR_PTR

WR_DATA RD_DATA

CLK1 CLK2

FULL EMPTY

DATA_IN DATA_OUT

PORT1 PORT2

SYNC

SYNC

CLK1

CLK2

15

Mesosynchronous Designs

When two systems of bounded frequency
need communicate, open loop
synchronization circuits can be used (no ACK)

CLK

SIG[1:0]

REQ

Hand
shaking

FSM

Hand
shaking

FSM

D QD Q

2SIG

REQ

CLK1 CLK2

CLK2 Assume:

CLK2 = CLK1 +
- 5%

Mesosynchronous Tradeoffs

Benefits to mesosynchronous designs
n Less synchronization circuitry
n Synchronizer might have lower latency vs. full 4-

phase handshaking

Costs of mesosynchronous designs
n Synchronizer only works at certain frequency

ratios (may hamper bringup/debug)
n Intolerant of spec mistakes (maybe that unload

frequency was supposed to be +- 50%!)

16

Words to the wise

Be wary of synchronizer schemes designed by
others
n Synopsys Designware DW04_sync multi-bit

synchronizer DOES NOT WORK as a synchronizer
n Synthesizers might use dynamic FFs as

synchronizers – they don’t know the difference.
n Auto-placement tools must be told to place

synchronizer FF pairs close together
BE PARANOID

Conclusions

Synchronizers are important. Synchronization
failure is deadly and difficult to debug
Synchronization requires careful design. Most
CAD and logic tools CANNOT catch bad
synchronizer designs.
Design of synchronizer depends on
performance level needed. Basic
synchronizer of back-to-back FFs is the core
design all others are based on.

