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Synchronization in Digital 
Logic Circuits

Ryan Donohue
Rdonohue@yahoo.com

Synchronization: Why care?

Digital Abstraction depends on all 
signals in a system having a valid logic 
state
Therefore, Digital Abstraction depends 
on reliable synchronization of external 
events
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The Real World

Real World does not respect the Digital 
Abstraction!
n Inputs from the Real World are usually 

asynchronous to your system clock

8 PORT
Gigabit

Ethernet
 Switch

n Inputs that come from other 
synchronous systems are based 
on a different system clock, which 
is typically asynchronous to your 
system clock

Metastability
When asynchronous events enter your 
synchronous system, they can cause bistables 
to go into metastable states
Every real life bistable (such as a D-latch) has 
a metastable state
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Quick Metastability Review

Once a FF goes metastable (due to a setup 
time violation, say) we can’t say when it will 
assume a valid logic level or what level it 
might eventually assume
The only thing we know is that the probability 
of a FF coming out of a metastable state 
increases exponentially with time

FF in 'normal' states FF in metastable state

'1' state'0' state '0' state '1' state

Mean Time Between Failures

For a FF we can compute its MTBF, 
which is a figure of merit related to 
metastability.

e
(tr/τ)

Tofa
MTBF(tr) =

tr resolution time (time since clock edge)

τ and To  FF parameters

f  sampling clock frequency
a  asynchronous event frequency

For a typical .25um
ASIC library FF

τ = 0.31ns
To = 9.6as

tr = 2.3ns
For f = 100MHz,

a = 1MHz
MTBF = 20.1 days
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Synchronizer Requirements

Synchronizers must be designed to 
reduce the chances system failure due 
to metastability
Synchronizer requirements
n Reliable [high MTBF]
n Low latency [works as quickly as possible]
n Low power/area impact

Single signal Synchronizer
Traditional synchronizer
n SIG is asynchronous, and META might go 

metastable from time to time
n However, as long as META resolves before the 

next clock period SIG1 should have valid logic 
levels  

n Place FFs close together to allow maximum time 
for META to reslove
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Single Synchronizer analysis

MTBF of this system is roughly:

e (tr/τ)

Tof
e (tr/τ)

Tofa
MTBF(tr) = x

Can increase MTBF by adding more series 
stages

For a typical .25um
ASIC library FF

τ = 0.31ns
To = 9.6as

tr = 2.3ns For f = 100MHz,
a = 1MHz

MTBF = 9.57x1010 years
Age of Earth = 5x109 years

D Q D Q
SIG META SIG1

D Q
SIG2

CLK

Flip Flop design is important?

Dynamic FFs not suitable for synchronizers 
since they have no regeneration

Special ‘SYNC’ FFs should be used for the 
primary synchronizer if available

D Q

CLK CLK
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CMOS Dynamic FF TSFF (Svenson)
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SYNC Flip Flop
SYNC Flip Flops are available in some ASIC 
libraries
n Better MTBF characteristics due to high gain in the 

feedback path
n Very large (5x regular FF) and very high power

D Q D Q
SIG META

CLK

SIG1

SYNC

Vin

Vout

VTC of
regular FF

series inverters

VTC of
SYNC FF

series inverters

'0' state

'1' state

Synchronization Pitfall

Never synchronize the same signal in multiple 
places!  Inconsistency will result!
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Bus Synchronization

Obvious approach is to use single signal 
synchronizers on each bit
WRONG!

D Q D Q
SIG1[0]

SYNC

D Q D Q
SIG1[1]

SYNC

SIG[0]

CLK

CLK

SIG[1]

SIG[0]

SIG1[0]

CLK
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Handshaking is the Answer
Need a single point of synchronization for the 
entire bus
CLK

SIG[1:0]

ACK

REQ

Hand
shaking

FSM

Hand
shaking

FSM

D QD Q

DQDQ

2SIG
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CLK1 CLK2

CLK1
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Handshaking Rules

Sender outputs data and THEN asserts REQ
Receiver latches data and THEN asserts ACK
Sender deasserts REQ, will not reassert it 
until ACK deasserts
Receiver sees REQ deasserted, deasserts ACK 
when ready to continue
CLK

SIG[1:0]

ACK

REQ

Alternate Handshaking Scheme

Previous example is known as 4-phase 
handshaking
2-phase (or edge based) handshaking is also 
suitable
n Sender outputs data and THEN changes state of 

REQ, will not change state of REQ again until after 
ACK changes state.

n Receiver latches data.  Once receiver is ready for 
more it changes state of ACK.

2-phase requires one bit of state be kept on 
each side of transaction.  Used when FFs are 
inexpensive and reliable reset is available.
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High Bandwidth solutions

Handshaking works great, but reduces 
bandwidth at the clock crossing 
interface because each piece of data 
has many cycles of series handshaking.
Correctly designed FIFOs can increase 
bandwidth across the interface and still 
maintain reliable communication

Abstract FIFO design

Ideal dual port FIFO writes with one 
clock, reads with another
FIFO storage provides buffering to help 
rate match load/unload frequency
Flow control needed in case FIFO gets 
totally full or totally empty

DATA_IN DATA_OUT

FULL EMPTY

CLK1 CLK2
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FIFO in detail
FIFO of any significant 
size is implemented using 
an on-chip SRAM
SRAM must be dual-
ported for our design 
[have two independent 
ports]
We will use a write 
pointer to determine the 
write address, and a read 
pointer to determine the 
read address

Dual Port
SRAM

FIFO
WRITE
LOGIC

FIFO
READ
LOGIC

RD_PTRWR_PTR

WR_DATA RD_DATA

CLK1 CLK2

FULL EMPTY

DATA_IN DATA_OUT

PORT1 PORT2

FIFO pointer control

FIFO is managed as a 
circular buffer using 
pointers.
First write will occur at 
address 00h.  Next write 
will occur at 01h. 
After writing at FFh, next 
write will wrap to 00h.
Reads work the same way.  
First read will occur at 
address 00h.

FEh
FFh

WRITE
PNTR

READ
PNTR

00h
01h

n bits of data
n bits of data

n bits of data
n bits of data
n bits of data
n bits of data
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FIFO pointers and flow control
Generation of FULL and EMPTY signals. 
n FIFO is FULL when write pointer catches read 

pointer

n FIFO is empty when read pointer catches write 
pointer

Write pointer and read pointer must never 
pass each other.
n Write passing read overwrites unread data
n Read passing write re-reads invalid data

always @(posedge clk1)
FULL <= (WR_PNTR == RD_PNTR) && ((OLD_WR_PNTR + 1 == RD_PNTR) || FULL)

always @(posedge clk2)
EMPTY <= (WR_PNTR == RD_PNTR) && ((OLD_RD_PNTR + 1 == WR_PNTR) || EMPTY)

FIFO in detail
We have a problem!

To generate FULL/EMPTY conditions the write 
logic needs to see the read pointer and the read 
logic needs to see the write pointer!

Dual Port
SRAM

FIFO
WRITE
LOGIC

FIFO
READ
LOGIC

RD_PTRWR_PTR

WR_DATA RD_DATA

CLK1 CLK2

FULL EMPTY

DATA_IN DATA_OUT

PORT1 PORT 2
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Pointer Synchronization

Our pointers change in a very specific way 
(when they change, they increment by 1)
n Applying a traditional two stage FF synchronizer on 

each bit of a binary pointer could cause a wildly 
invalid pointer value to be produced 

n Gray coding the pointer value means at most one 
bit will change per cycle – we can only be ‘off by 
one’

000
001
010
011
100
101
110
111

000
001
011
010
110
111
101
100

Binary Gray CLK

BIN[2:0]

GRAY[2:0]

011

010 110

100

BIN_S[2:0] 011

GRAY_S[2:0] 010 110 or 010

100

110

XXX

Pointer Synchronizer
Pointer is stored in gray code.  
A standard single bit 
synchronizer is used on each 
bit of PTR_OUT.  At most one 
bit changes per cycle!
We can still do binary math to 
increment the pointer.

D Q

CLK

PTR_OUT

1

bin2gray

gray2bin

module bin2gray (bin,gray);

parameter SIZE = 4;

input [SIZE-1:0] bin;
output [SIZE-1:0] gray;
reg [SIZE-1:0] gray;

always @(bin)
        gray = (bin >> 1) ^ bin;

endmodule

module gray2bin (gray,bin);

parameter SIZE = 4;

input [SIZE-1:0] gray;
output [SIZE-1:0] bin;
reg [SIZE-1:0] bin;

integer i;

always @(gray)
for (i=0; i<SIZE; i=i+1)
        bin[i] = ^(gray >> i);

endmodule
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Pointer Synchronizer pitfall

Write and read pointers need to be registered 
in gray code as shown on previous slide.
Don’t be tempted to cheat and register 
pointers in binary.  What’s wrong with the 
synchronizer shown below?

D Q D Q
PTR_IN

CLK

PTR_OUT

SYNC
bin2gray gray2bin

Answer to pitfall

Combinational logic frequently contains 
hazards at the output (non fully covered 
Karnaugh map)
Avoid this problem by using a registered 
value of PTR_IN

D Q D Q
PTR_IN

CLK

PTR_OUT

SYNC
bin2gray gray2bin

PTR_IN[2:0] 011 100

CLK

PTR_IN_G[2:0] 010 110

LOGIC HAZARD (unknown value)
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Pointer math pitfall

When our pointer synchronizer goes 
metastable our new pointer value may not be 
updated until one cycle later.
We need to be conservative when generating 
FULL and EMPTY signals to reflect this.
n Typically FULL = 1 when WRITE catches READ.  

We need FULL = 1 when WRITE catches READ-1.
n Typically EMPTY = 1 when READ catches WRITE.  

We need EMPTY = 1 when READ catches WRITE-1.

Final Synchronizer FIFO Design

Works for any phase/frequency relationship 
between CLK1 and CLK2

Dual Port
SRAM

FIFO
WRITE
LOGIC

FIFO
READ
LOGIC

RD_PTRWR_PTR

WR_DATA RD_DATA

CLK1 CLK2

FULL EMPTY

DATA_IN DATA_OUT

PORT1 PORT2

SYNC

SYNC

CLK1

CLK2



15

Mesosynchronous Designs

When two systems of bounded frequency 
need communicate, open loop 
synchronization circuits can be used (no ACK)

CLK

SIG[1:0]

REQ

Hand
shaking

FSM

Hand
shaking

FSM

D QD Q

2SIG

REQ

CLK1 CLK2

CLK2 Assume:

CLK2 = CLK1 +
- 5%

Mesosynchronous Tradeoffs

Benefits to mesosynchronous designs
n Less synchronization circuitry
n Synchronizer might have lower latency vs. full 4-

phase handshaking

Costs of mesosynchronous designs
n Synchronizer only works at certain frequency 

ratios (may hamper bringup/debug)
n Intolerant of spec mistakes (maybe that unload 

frequency was supposed to be +- 50%!)
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Words to the wise

Be wary of synchronizer schemes designed by 
others
n Synopsys Designware DW04_sync multi-bit 

synchronizer DOES NOT WORK as a synchronizer
n Synthesizers might use dynamic FFs as 

synchronizers – they don’t know the difference.
n Auto-placement tools must be told to place 

synchronizer FF pairs close together
BE PARANOID

Conclusions

Synchronizers are important.  Synchronization 
failure is deadly and difficult to debug
Synchronization requires careful design.  Most 
CAD and logic tools CANNOT catch bad 
synchronizer designs.
Design of synchronizer depends on 
performance level needed.  Basic 
synchronizer of back-to-back FFs is the core 
design all others are based on.


