Lecture 7: Lab 2 & Pipelining

David Black-Schaffer
davidbbs@stanford.edu
EE183 Spring 2003

Overview

- Fixed Point
 - Determine your number format from the matlab code (what’s the largest number you get?)
 - Map the -2 to 2 plane to a 0 to 63 screen by extracting bits and choosing a binary point
 - Fixed point notation is just a different interpretation (same counting)

- Pipelining
 - If it won’t fit in one clock cycle you have to divide it up so each stage will fit
 - The control logic must be designed with this in mind
 - Make sure you need it

Public Service Announcement

- Xilinx Programmable World
 - Tuesday, May 6th

- Guest Lectures
 - Monday, April 28th
 Ryan Donohue on Metastability and Synchronization
 - Wednesday, May 7th
 Gary Spivey on ASIC & FPGA Design for Speed
 - The content of these lectures will be on the Quiz

Logistics

- Writeup for Lab 1 due tonight at midnight.
- If you haven’t finished Lab 1 let us know what’s up — getting behind now can be a real problem later!
- Lab 2 Prelab due Friday by 5pm
- Guest lecture next Monday: SHOW UP! (please!)
Lab 2 Requirements

- Pipelined calculation of a 64x64x4-bit fractal from -2 to 2 in the real and imaginary planes
- Switch display between Mandelbrot and Julia set
- Julia set constants chosen by the position of a blinking cursor as in lab 1
- You must have at least one of:
 - Animation around an “interesting” path for the Julia set
 - Zoom in/out capability (much cooler)
- Encouraged:
 - Color animation
 - Parallel computation

Key Concepts for Lab 2

- Data path and control path separation
- Fixed calculation path
- Standard FSM control
- Fixed-point math
 - Counting is the same, it’s just a matter or interpretation
 - 0 to 64 counts the same as 0.00 to 4.00 in binary
- Pipelining
 - What if it doesn’t all fit in one clock cycle? (20ns)
 - Split it up into chunks with pipeline registers between them
- Parallelism
 - How much can you calculate at the same time?
 - Conflicts in accessing shared resources? (RAM)

Mandelbrot Fractal

- The Mandelbrot set is the set of points in the complex c-plane that do not go to infinity when iterating \(z_{n+1} = z_n^2 + c \) starting with \(z = 0 \). One can avoid the use of complex numbers by using \(z = x + iy \) and \(c = a + ib \), and computing the orbits in the ab-plane for the 2-D mapping
 \[
 x_{n+1} = x_n^2 - y_n^2 + a

 y_{n+1} = 2x_ny_n + b
 \]
 with initial conditions \(x = y = 0 \) (or equivalently \(x = a \) and \(y = b \)). It can be proved that the orbits are unbounded if \(|z| > 2 \) (i.e., \(x^2 + y^2 > 4 \)).

Not Really Complicated

Really just iterate over the -2 to 2 real (x) and imaginary (y) planes (i.e., the screen) repeatedly calculating:
\[
\begin{align*}
x_{n+1} &= x_n^2 - y_n^2 + a \\
y_{n+1} &= 2x_ny_n + b
\end{align*}
\]
Until \(x^2 + y^2 > 4 \) or the number of iterations is > 64. Then the number of iterations it took is what you display at that location on a 64x64x4-bit display.
Complicated bits

- How do we do the multiplication?
- How do we get the numbers -2 to 2 to map to a screen 64 pixels wide? Fractions!?
- How do we zoom in?
- How do we make it run fast?

Data Path

Feedback for next iteration

Fixed Point Examples

- Twos-complement numbers just work
- It all depends on how you interpret the binary point

3.3 Notation: 6.0 Notation:

<table>
<thead>
<tr>
<th></th>
<th>3.3 Notation</th>
<th>6.0 Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>000.110</td>
<td>000110.</td>
</tr>
<tr>
<td></td>
<td>101.100</td>
<td>101100.</td>
</tr>
<tr>
<td></td>
<td>110.010</td>
<td>110010.</td>
</tr>
</tbody>
</table>

- What is this? Shift binary point left 3 places?
 Divide by 8 when interpreting!

Fixed Point Math

- Addition/Subtraction as normal if you use twos-complement!
- Any reason not to use it?
- None that I can think of.
- Multiplication works as normal if you select the right thing in CoreGen
- 8-bit multiplier takes in two 8-bit numbers and outputs a 16-bit result
- What do you keep?
- How big/small is the result?
Fixed Point Partition?

- How big should the integer part or fractional part be?
 - As small as possible to keep the multipliers small and fast
 - Not so small that we lose precision or overflow
- Key insight:
 - We stop the loop when magnitude is greater than 4
 - Use that knowledge to approximate size of intermediate operands
 - Run a matlab simulation and figure out the largest value
 - Do you all know matlab, right?
 - What about zooming?
 - Need more precision?
 - How much?

Tricky Bit

- We have a 64x64 pixel screen. We want to map this to -2 to 2. How do we do that?
- Hint:
 - Counting from 0 to 64 goes 0000000 to 0111111 in 7.0 notation
 - Counting from 0.00 to 4.00 goes 000.0000 to 011.1111 in 3.4 notation
 - What’s the difference? Only your interpretation of where the binary point is different.
 - So 0 to 64 is the same as 0.00 to 4.00, but we want -2.00 to 2.00
 - What can you do to easily fix that?

Pipelining

- What do we do if the whole data path doesn’t fit in 20ns?

Pipelining Example 1

- Critical Path: 24ns
 - Too slow!
- Feedback for next iteration
 - How long does this wire take?
Pipelining

- What do we do if the whole data path doesn’t fit in 20ns?
- Split it up into smaller chunks with registers between them so our register-to-register time fits in 20ns.
- Each chunk **does less** but finishes faster
- Gets our clock speed up, but takes more clocks (remember the P4 vs. P3 example)

What next?

- It’s still too slow…
- Add more pipeline stages!
- Where?
 - Where ever the critical path is > one clock cycle
 - However, try to keep each stage the same length
Latency and Throughput

Not Pipelined

<table>
<thead>
<tr>
<th>Time</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>t=0</td>
<td>A1</td>
<td>A1</td>
</tr>
<tr>
<td>t=50ns</td>
<td>A2</td>
<td>A1</td>
</tr>
<tr>
<td>t=100ns</td>
<td>A3</td>
<td>A2</td>
</tr>
<tr>
<td>t=150ns</td>
<td>A3</td>
<td>A3</td>
</tr>
</tbody>
</table>

Pipelined

<table>
<thead>
<tr>
<th>Time</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>t=0</td>
<td>A1</td>
<td>A1</td>
</tr>
<tr>
<td>t=20ns</td>
<td>A2</td>
<td>A1</td>
</tr>
<tr>
<td>t=40ns</td>
<td>A3</td>
<td>A2</td>
</tr>
<tr>
<td>t=60ns</td>
<td>A3</td>
<td>A2</td>
</tr>
<tr>
<td>t=80ns</td>
<td>A3</td>
<td>A3</td>
</tr>
</tbody>
</table>

50ns critical path

1 stage

One result every 20ns after a 2 cycle delay.

Key points on Pipelining

- Insert the next data item into the datapath before the previous one has finished.
- PipeRegisters keep the computation separate.
- Increases utilization for operators.
- What is the effect of the algorithm feeding back on itself?
 - Do all iterations have the same number of iterations?
 - How to manage this in Lab 1?
 - More complicated control logic?

Issues with Pipelining

- Throughput
 - It now takes n cycles to get a result.
 - Can we put in n calculations at once?
 - Conflicts? Forwarding? Lab 2 has conflicts...
 - Latency vs. Throughput — you must understand the needs of your algorithm!

- Difficulty
 - Non-trivial to implement.
 - Make sure you need it!
 - For lab 2, do you need it?

Multipliers

- CoreGen gives you several pipelining options.
- Which is best?
 - Depends on your design.
- How fast are they?
 - Depends on the size.
- Look at the spec sheets or run the timing tools.
 - Remember that routing delay will depend on your final design!
Pipelining Summary

- Make each stage shorter to get a higher clock speed...
- but do less in each stage...
- so, we need to put multiple calculations through at the same time to get higher performance out of it...
- more complicated control and...
- data hazards!

Parallelism

- Divide up the problem into multiple problems that can be solved simultaneously
- If they are identical then just instantiate multiple copies of the hardware
- Easy, if there are no resource conflicts

Resource Conflicts

- For Lab 2, multiple calculation units will need to write back to the same RAM.
- When they need to write back at the same time what do you do?
 - Priority scheme: delay one? Which?
 - Avoid starvation. (Round-robin, token)
- Do we care for lab 2?
 - How often will they be competing?
 - Know your algorithm. Simulation.

Lecture 6 Key Points

- Fixed-point numbers are the same as regular two's-complement numbers except for how you interpret the placement of the binary point.
- Pipelining increases the clock speed but decreases the amount of work per clock
- Parallelism is easy except for resource conflicts
- Logistics
 - Lab 1 Writeup due tonight at midnight URL to Joel
 - Visiting lecturer next Monday – contents will be on the quiz