Problem Set #8

Due Date: Wednesday, December 9, 2005. Submit in class.

Problems:

1. Rayleigh Waves [30 points]
 (a) Find the six roots of the Rayleigh equation for a perfectly compressible \((\mu \text{ finite, } \lambda = 0)\)
 semi-infinite isotropic solid with a vacuum interface. Hint: one of the roots is \(\sqrt{2}\). [10 points]
 (b) Which of the six roots is the \(+x\)-directed slow-wave solution? Find the Rayleigh wave speed. [5 points]
 (c) Sketch the particle motion at the surface and find the depth where the particle motion is
 only in the \(z\) direction. [15 points]

 For a wave in a stratified and isothermal atmosphere, assume a solution having vertical displacement
 \[\zeta = \zeta_0 e^{ix} \cos(\omega t - ax - \gamma z) \]
 where \((2\nu)^{-1}\) is the scale height of the atmosphere. Consider the incompressible case \((c \to \infty)\):
 (a) Find the expression for \(\xi\). [4 points]
 (b) For a fixed point in space \((x = 0, z = 0)\), eliminate time from the expressions for \(\xi\) and \(\zeta\)
 to obtain the following equation for the particle orbits [10 points]:
 \[\xi^2 + \zeta^2 \left(\frac{N^2}{\omega^2} - 1 \right) + 2 \frac{\nu}{\alpha} \xi \zeta = \frac{\nu^2}{\alpha^2} \zeta_0^2 \]
 (c) Describe the shape of the orbit for the cases below. For v through viii, compare the
 lengths of the vertical and horizontal displacements for the prescribed ellipses. Use the
 orbit equation above. [16 points]
 i. \(\omega < N\)
3. Equatorial waves [30 points]

When we apply the shallow water equations on the rotating earth in Cartesian geometry, we obtain the following characteristic equation for propagating waves near the equator

\[
\frac{\sqrt{gh}}{\beta} \left(\frac{\omega^2}{gh} - k^2 - \frac{k}{\omega^2} \right) = 2n + 1
\]

where \(h \) is the equivalent depth of the ocean near the equator (constant), \(\beta \) is the Coriolis parameter (constant near the equator), \(g \) is the acceleration due to gravity (constant), \(k \) is the longitudinal wavenumber, \(\omega \) is the angular frequency, and \(n \) (an integer) corresponds to the meridional mode number (for different solutions).

(a) Plot the \(\omega \) vs \(k \) diagrams for each of the following modes.

(b) Comment on the direction of propagation (positive \(k \) corresponds to eastward propagating waves along the equator) and the nature of dispersion.

(c) What are the corresponding cut-off frequencies for eastward propagating waves (positive \(k \))?

i. Mixed Rossby-gravity wave (\(n = 0 \))
ii. Kelvin wave (\(n = -1 \))
iii. Rossby wave (\(n = 2 \), Low frequency)
iv. Inertio-gravity wave (\(n = 2 \), High frequency)

Note: You can plot \(\omega' = \omega/(\beta \sqrt{gh})^{\frac{1}{2}} \) vs \(k' = k(\sqrt{gh}/\beta)^{\frac{1}{2}} \) to make your plots independent of the constants, \(g, h \) and \(\beta \).