EE 267: Introduction and Overview

Gordon Wetzstein Stanford University

EE 267 Virtual Reality

Lecture 1

stanford.edu/class/ee267/

vərCH(əw)əl rē'alədē

the computer-generated simulation of a three-dimensional image or environment that can be interacted with in a seemingly real or physical way by a person using <u>special electronic equipment</u>, such as a helmet with a screen inside or gloves fitted with sensors.

simulation & training

gaming

education

visualization & entertainment

virtual travel

remote control of vehicles, e.g. drones

architecture walkthroughs

a trip down the rabbit hole

VR at Stanford's Medical School

• Lucile Packard Children's Hospital: used to alleviate pain, anxiety for pediatric patients

 VR Technology Clinic: applications in psychotherapy, mental health, for people with phantom pain, ...

help train residents, assist surgeons planning operations, ...

photo from Stanford Medicine News

National Academy of Engineering

"Enhance Virtual Reality" is 1 of 14 NAE grand challenges for engineering in the 21st century

Exciting Engineering Aspects of VR/AR

- cloud computing
- shared experiences

 compression, streaming

VR cameras

CPU, GPUIPU, DPU?

- sensors & imaging
- computer vision
- scene understanding
- photonics / waveguides
- human perception
- displays: visual, auditory, vestibular, haptic, ...

- HCI
- applications

Where We Want It To Be

Personal Computer e.g. Commodore PET 1983

Laptop e.g. Apple MacBook

STREET, STREET

???

AR/VR/MR e.g., Apple Vision Pro

A Brief History of Virtual Reality

Stereoscopes Wheatstone, Brewster, ... VR & AR Ivan Sutherland Nintendo Virtual Boy VR explosion Oculus, Sony, Apple, ...

Ivan Sutherland's HMD

- optical see-through AR, including:
 - displays (2x 1" CRTs)
 - rendering
 - head tracking
 - interaction
 - model generation
- computer graphics
- human-computer interaction

Nintendo Virtual Boy

computer graphics & GPUs were not ready yet!

Game: Red Alarm

Where we are now

IFIXIT Apple Vision Pro - teardown

electronic / digital

1968

HCI / haptics

1980s

low cost, high-res, low-latency!

2000s

Problems:

- fixed focal plane
- no focus cues ☺
 - cannot drive accommodation with rendering!

Focus Cues (Monocular)

Visual Cue

Focus Cues (Monocular)

Visual Cue

Focus Cues (Monocular)

Visual Cue

Focus Cues (Monocular)

Visual Cue

Binocular Disparity

Focus Cues (Monocular)

Visual Cue

Binocular Disparity

Visual Cue

Oculomotor Cue

Stereopsis (Binocular)

Focus Cues (Monocular)

Mixed Reality or Pass-through VR

(not really covered in this class, but closely related)

Apple Vision Pro (supposedly) has 14 cameras!

4x front- and side-facing for SLAM.

2x for pass through.

4x for eye & face tracking.2x for torso tracking.1x for gesture tracking.1x time-of-flight sensor.

What's Pass-through VR?

- How you see the physical environment (room, people, your body parts)
- Pass-through = video camera(s) record the scene, typically do some 3D reconstruction, then re-render on digital display for stereo vision
- Issues:
 - Resolution
 - Latency
 - Image quality (color, noise, reconstruction fidelity, ...)
 - Dynamic range / contrast

(Optical See-through) Augmented Reality

(not really covered in this class, but closely related)

Pepper's Ghost 1862

Microsoft HoloLens

US 20160231568A1

Microsoft HoloLens

ttent Application Publication rikko et al.			(10) Pub. ? (43) Pub. I	No.: US 2 Date:	Aug. 11, 2016	
WEGU	IDE	(52)	US.CL	G818 1187	7 (1013.01) (2018.4842	
plicant	Microsoft Technology Licensing, LLC, Redmond, WA (US)		0	2013.01); GH2 2027/011 (# 5/18/2 (2013.01); G021 2013.01); G028 2027/077 (2013.01)	
entors	Paul Saarikko, Espoo (FI); Paul Kontamo, Espoo (FI)	(57)		ABSTRA	ст	
pl. No.:	No.: 14607,697 engi No.: 14607,697 engi territori Feb. 9, 2015 the t		A wregnote that a notice must provide the developed of a display system and arranged to guide platform a light from a light engine onto an eye of a user to make an image visible to the user, the light guided through the waveguide by reflection a the front and arear surfaces. A first portion of the front or non- surface has a structure which causes light to change plass			
ed:						
Publication Classification		seco whic	nd portion of the causes light to	in the first po he same surfa to change pha	etion by a first amount. 7 ce has a different structure ne aron reflection from the	
0.		HOUR	ad portion by a	a second amo	sat different from the first	
28 274	V (2006.01)	antor	unt. The first po	etion is offset	from the second portion by	
28 5/78 19° £ 06	(2006.01) (2006.01)	a di betu	istance which sen the second	substantially amount and	matches the difference the first amount.	

on United States

- diffraction grating
- small FOV (30x17), but very good image quality

Microsoft HoloLens 2

- laser-scanned waveguide display
- claimed 2K resolution per eye (2560x1440), probably via "interlaced" scanning
- field of view: 52° diagonally (3:2 aspect, 47 pixels per visual degree)

Wall et al. US 10,025,093 2018

Video-based AR: ARCore, ARKit, ARToolKit, ...

Your first (unofficial = we won't check) homework:

Book a demo session with the Apple Vision Pro at the Apple Store (e.g., in the Stanford Mall)

EE267 Instructors

Gordon Wetzstein

Associate Professor of EE/CS

Suyeon Choi

Manu Gopakumar

Research Assistants and EE267 - VR experts!

About EE 267

- experimental class, only taught at Stanford
- lectures + assignments = one big project <u>build your own VR HMD</u>
- all hardware provided, but must return at the end
- enrollment limited, because it's a lab-based class and we only have limited hardware kits – <u>share kits to let more students take the class!</u>
- 1 or a few guest lectures by leaders toward the end of the quarter

About EE 267 - Goals

• again, primary goal: build your own HMD!

- learn what is necessary to get there along the way:
 - computer graphics / real-time rendering
 - human visual system
 - magnifying optics
 - orientation (i.e. "3 DoF") and pose (i.e. "6 DoF") tracking

• very technical course! lots of math and programming!!

About EE 267 – Learning Goals

• understand fundamental concepts of VR and Computer Graphics

• implement software + hardware of a head mounted display

• learn basic WebGL/JavaScript and Arduino programming

What EE 267 is not!

- *not a* "build VR application in Unity" course, although you can do that in your project
- not a "here is a high-level overview of VR" course you need to implement everything discussed in the lectures in your weekly assignments
- not a super hard course, but requires consistent work effort and time commitment throughout the quarter

HMD Housing & Lenses

IMU & Teensy

1

Vibration Motors

6" or 5.5" LCD & HDMI Driver Board

Flex Sensors

HDMI Cable

HMD Housing and Lenses

- View-Master VR Starter Kit (\$15-20) or Deluxe VR Viewer (\$23)
 - implements Google Cardboard 1.0/2.0
 - very durable protect flimsy LCDs

Display

- Small LCDs, either 6" or 5.5"
- HDMI driver boards included
- super easy to use as external monitor on desktop or laptop

VRduino

- Arduino-based open source platform for:
 - orientation tracking
 - positional tracking
 - interfacing with other IO devices
- custom-design for EE 267 by Keenan Molner
- all HW-related files on course website

VRduino

- Teensy 3.2 microcontroller (48 MHz, \$20) for all processing & IO
- InvenSense 9250 IMU (9-DOF, \$6) for orientation tracking
- Triad photodiodes & precondition circuit (\$1) for position tracking with HTC Lighthouse

Some Student Projects - Input Devices

- data gloves with flex sensors
- different types of controllers with tactile feedback via vibration motors
- all connected to VRduino GPIO pins

About EE 267

• all important info here: http://stanford.edu/class/ee267/

• plenty of (zoom) office hours and Ed Discussion: see website

• contact: ee267-spr2324-staff@lists.stanford.edu

About EE 267 - Prerequisites

strong programming skills required (ideally JavaScript)
do NOT take this course if you have not programmed!

 basic linear algebra required – we will start dreaming about 4x4 matrices (must know what a matrix, matrix-vector product, etc. is)

• introduction to computer graphics or vision helpful

About EE 267 – Lectures & Labs

- 2 lectures per week: Tue/Thu 12-1:50 pm
 - Video recordings:
 - 1. No videos (default options)
 - 2. May record lectures on zoom and upload on canvas (don't rely on it!)
- 1 lab per week starting in week 1 (do at home, will release writeups and videos with links to online tutorials and other important things)
- you will need the skills of the lab to complete the homework, so <u>do the</u> <u>lab first and then start working on the homework!</u>

About EE 267 – Labs & Assignments

• labs and homeworks released every Friday

• do all of these at home by yourself or in small teams

• we will hand out all required hardware (details later)

About EE 267 – Office Hours

• Gordon (instructor):

Mondays 1-2 pm, Packard 236 talk about projects, VR, course logistics, etc.

- Suyeon (TA):
- Manu (TA):

Tue, 11am-12pm, Packard 104 Thu, 1:30-2:30pm, Packard 104 talk about labs, assignments, ...

No zoom by default!

EE 267 – 3/4 unit version

Both versions:

- 6 assignments covering all aspects of VR tech: 2x basic computer graphics, 2x perception+graphics+optics, 2x tracking
- Final project (hardware, software, or perceptual experiments) worth ~ 2x regular homework

3 Unit version:

• 1-2 page project report

4 Unit version:

• 6–8 page project report required (more details on website)

EE 267W – 5 unit WIM version

• satisfies writing in the major requirement

• only available for undergraduates already enrolled in the 4 unit version

 will get extra weekly writing and peer-reviewing assignments + 2 writing / presentation workshops

• talk to instructors if you want to do this in first week of class!

Requirements and Grading

- <u>6 assignments</u> (teams of \leq 2): 60%
- 80 minute in-person midterm: 20%

- project (teams of \leq 3): 20%
 - discuss project ideas with TA & instructor!
 - final presentation (poster/demo session) on 5/30/2024
 - reports & code due (gradescope): 5/31/2024, 11:59pm

Course Project Deliverables

• <u>May 30, 11am – 1:30pm</u>: In-person poster/demo session

- By default: show demo on your own HMD or some commercial HMD
 - Generally, we do not provide commercial HMDs for your project
 - A few items can be lent out for the project limited quantity!

• Show a poster for non-demoable projects (see template on website)

Course Project Deliverables

- <u>May 31 (11:59pm)</u>: report + source code
- report (3 unit course version) = 1-2 page summary with the same topics listed below, just shorter (think "extended conference abstract")
- report (4/5 unit course version) = conference paper format 6-8 pages with
 - abstract
 - introduction and motivation
 - related work
 - your thing
 - results, qualitative and quantitative evaluation
 - discussion, future work, and conclusion
 - references (scientific papers, not websites)
 - see latex template on website (will be there)

Possible Course Projects

• be experimental!

- for example:
 - Default: build an elaborate virtual environment, e.g. with unity
 - psycho-physical experiments (e.g. test stereo rendering with color/gray, low-res/high-res, ...)
 - hardware projects: IMU, positional tracking, eye tracking, haptics, ...

Relevant Scientific Venues

• ACM SIGGRAPH / SIGGRAPH Asia conferences (general computer graphics)

• IEEE VR, ISMAR, VRST conferences (focused on VR/AR)

• HCI conferences: ACM SIGCHI, UIST, ...

• Optics journals: OSA Optics Express, Optics Letters, Applied Optics, ...

Tentative Schedule

http://stanford.edu/class/ee267/

Questions?