
Inertial Measurement Inertial Measurement Units II

Gordon Gordon Wetzstein
Stanford University

EE 267 Virtual Reality

Lecture 10
stanford.edustanford.edu/class/ee267/

Polynesian Migration

wikipedia

Lecture Overview

! short review of coordinate systems, tracking in flatland, and
accelerometer-only tracking

! rotations: Euler angles, axis & angle, gimbal lock
! rotations with quaternions

! 6-DOF IMU sensor fusion with quaternions

! primary goal: track
orientation of head or
device

! inertial sensors required
pitch, yaw, and roll to be
determined

oculus.com

oculus.com

vclip = Mproj !Mview !Mmodel !v

from lecture 2:

vertexvertex in clip space

v !v

oculus.com

vclip = Mproj !Mview !Mmodel !v

from lecture 2:

Mview = R !T "eye()

projection matrix model matrixview matrix

vertexvertex in clip space

v !v

rotation

= R

translation

T (

Mv

view matrix

M

model matrix

M

projection matrix

oculus.com

Euler angles

Mview = R !T "eye()

rotation

= R

translation

T (R

yawpitchroll
R = Rz !" z() #Rx !" x() #Ry !" y()

! y

! z
! x

oculus.com

Mview = R !T "eye()

world/inertial
frame

body/sensor
frame

R !T= RR

2 important
coordinate systems:

R

R = Rz !" z() #Rx !" x() #Ry !" y()
yawpitchroll

Euler angles

! y

! z
! x

! t + "t() #! t() + $
$t
! t()"t + % , % !O "t 2()

! from gyro measurements to orientation from gyro measurements to orientation ––– use Taylor expansion

Gyro Integration aka Dead Reckoning

=!want: angle at
current time step

: angle at

have: angle at
last time step

! t(

have:
time step

have: gyro measurement
(angular velocity)

"t
approximation error!approximation error!

Orientation Tracking in Flatland

! problem: track 1 angle in 2D space
! sensors: 1 gyro, 2sensors: 1 gyro, 2-sensors: 1 gyro, 2-axis sensors: 1 gyro, 2

accelerometer
! sensor fusion with complementary sensor fusion with complementary

filter, i.e. linear interpolation:

! no drift, no noise!

!"#$%&'

()*

! t() =" ! t#1() + !$%t() + 1#"()atan2 !ax , !ay()

Tilt from Accelerometer

! assuming acceleration points up (i.e. no external forces), we can
compute the tilt (i.e. pitch and roll) from a 3-axis accelerometer

! z = "atan2 "âx , ây() both in rad
=

!cos !" x()sin !" z()
cos !" x()cos !" z()

sin !" x()

#

$

%
%
%
%

&

'

(
(
(
(

! x = "atan2 âz ,sign ây() # âx
2 + ây

2()

â =
!a
!a
= R

0
1
0

!

"

#
#

$

%

&
&
= Rz '(z())Rx '(x())Ry '(y()

0
1
0

!

"

#
#

$

%

&
&

Euler Angles and Gimbal Lock

! so far we have represented head rotations with Euler angles: 3
rotation angles around the axis applied in a specific sequence

! problematic when interpolating between rotations in keyframes
(in computer animation) or integration ! singularities

Gimbal Lock

The Guerrilla CG Project, The Euler (gimbal lock) Explained – see: https://www.youtube.com/watch?v=zc8b2Jo7mno

Rotations with Axis-Angle Representation
and Quaternions

Rotations with Axis and Angle Representation

! solution to gimbal lock: use axis and angle representation for
rotation!

! simultaneous rotation around a
normalized vector v by angle

! no “order” of rotation, all at once around
that vector

!

Quaternions

! think about quaternions as an extension of complex numbers
to having 3 (different) imaginary numbers or fundamental
quaternion units i,j,k

q = qw + iqx + jqy + kqz

i2 = j2 = k2 = ijk = !1

i ! j ! k
ij = ! ji = k

ki = !ik = j

jk = !kj = i

Quaternions

! think about quaternions as an extension of complex numbers
to having 3 (different) imaginary numbers or fundamental
quaternion units i,j,k

! quaternion algebra is well-defined and will give us a powerful
tool to work with rotations in axis-angle representation in
practice

q = qw + iqx + jqy + kqz

Quaternions

! axis-angle to quaternion (need normalized axis v)

q ! ,v() = cos !
2

"
#$

%
&'

qw
!"# $#

+ i vx sin
!
2

"
#$

%
&'

qx
! "# $#

+ j vy sin
!
2

"
#$

%
&'

qy
! "# $#

+ k vz sin
!
2

"
#$

%
&'

qz
! "# $#

Quaternions

! axis-angle to quaternion (need normalized axis v)

q ! ,v() = cos !
2

"
#$

%
&'

qw
!"# $#

+ i vx sin
!
2

"
#$

%
&'

qx
! "# $#

+ j vy sin
!
2

"
#$

%
&'

qy
! "# $#

+ k vz sin
!
2

"
#$

%
&'

qz
! "# $#

q = qw
2 + qx

2 + qy
2 + qz

2 = 1

! valid rotation quaternions have unit length

Two Types of Quaternions

! vector quaternions represent 3D points or vectors u=(ux,uy,uz)
can have arbitrary length

qu = 0 + iux + j uy + kuz

q = qw
2 + qx

2 + qy
2 + qz

2 = 1

! valid rotation quaternions have unit length

Quaternion Algebra

q + p = qw + pw() + i qx + px() + j qy + py() + k qz + pz()
• quaternion addition:

• quaternion multiplication:
qp = qw + iqx + jqy + kqz() pw + ipx + jpy + kpz()

= qw pw − qx px − qy py − qz pz() +
i qw px + qx pw + qy pz − qz py() +
j qw py − qx pz + qy pw + qz px() +
k qw pz + qx py − qy px + qz pw() +

Quaternion Algebra

! quaternion conjugate:

! quaternion inverse:

! rotation of vector quaternion by :
! inverse rotation:

! successive rotations by then :

q!1 = q*

q 2

q* = qw ! iqx ! jqy ! kqz

q 'u = qquq
!1

qu = q
!1q 'u q

qu q

q1 q2 q 'u = q2 q1 qu q1
!1 q2

!1

Quaternion Algebra

! detailed derivations and reference of general quaternion
algebra and rotations with quaternions in course notes

! please read course notes for more details!

Quaternion-based

6-DOF Orientation Tracking

Quaternion-based Orientation Tracking

1. 3-axis gyro integration

2. computing the tilt correction quaternion

3. applying a complementary filter

Gyro Integration with Quaternions

! start with initial quaternion:

! convert 3-axis gyro measurements to
instantaneous rotation quaternion as

 avoid division by 0!

! integrate as

q 0() = 1+ i0 + j0 + k0

q! = q !t !" ,
!"
!"

#
$%

&
'(

q!
t+"t() = q t()q"

angle rotation
axis

!! = !! x , !! y , !! z()

Gyro Integration with Quaternions

q!
t+"t() = q t()q"! integrate as

! integrated gyro rotation quaternion represents rotation
from body to world frame, i.e.

! last estimate is either from gyro-only (for dead reckoning)
or from last complementary filter

q!
t+"t()

qu
world() = q!

t+"t()qu
body()q!

t+"t()#1

q t()

Tilt Correction with Quaternions
! assume accelerometer measures gravity vector in body

(sensor) coordinates

! transform vector quaternion of into current estimation of
world space as

qa
world() = q!

t+"t()qa
body()q!

t+"t()#1

!a = !ax , !ay , !az()

qa
body() = 0 + i !ax + j !ay + k !az

!a

Tilt Correction with Quaternions
! assume accelerometer measures gravity vector in body

(sensor) coordinates

! transform vector quaternion of into current estimation of
world space as

! if gyro quaternion is correct, then accelerometer world vector
points up, i.e.

qa
world() = q!

t+"t()qa
body()q!

t+"t()#1

!a = !ax , !ay , !az()

qa
world() = 0 + i0 + j 9.81+ k0

!a

Tilt Correction with Quaternions

qa
world() = 0 + i0 + j 9.81+ k0

! if gyro quaternion is correct, then accelerometer world vector
points up, i.e.

! gyro quaternion likely includes drift
! accelerometer measurements are noisy and also include

forces other than gravity, so it’s unlikely that accelerometer
world vector actually points up

solution: compute tilt correction quaternion that would rotate
into up direction

how? get normalized vector part of vector quaternion

Tilt Correction with Quaternions

qa
world()

v =
qax
world()

qa
world() ,

qay
world()

qa
world() ,

qaz
world()

qa
world()

!

"
##

$

%
&&

qa
world()

Tilt Correction with Quaternions

n =

vx
vy
vz

!

"

#
#
#

$

%

&
&
&
'

0
1
0

!

"

#
#

$

%

&
&
=

(vz
0
vx

!

"

#
#
#

$

%

&
&
&

qt = q !, n
n

"
#$

%
&'

vx
vy
vz

!

"

#
#
#

$

%

&
&
&

i
0
1
0

!

"

#
#

$

%

&
&
= cos '() (' = cos)1 vy()

Tilt Correction with Quaternions

solution: compute tilt correction quaternion that would rotate
into up direction

qa
world()

Complementary Filter with Quaternions

! complementary filter: rotate into gyro world space first, then
rotate “a bit” into the direction of the tilt correction quaternion

! rotation of any vector quaternion is then

qc
t+!t() = q 1"#()$, n

n
%
&'

(
)*
q+

t+!t()
0 !" !1

qu
world() = qc

t+!t()qu
body()qc

t+!t()"1

Integration into Graphics Pipeline

! compute via quaternion complementary filter first

! stream from microcontroller to PC

! convert to 4x4 rotation matrix (see course notes)

! set view matrix to to rotate the world in front of the
virtual camera

qc
t+!t()

qc
t+!t() " Rc

Mview = Rc
!1

Head and Neck Model

!z

y

x

y

ln

ln

! x ! z

pitch around base of neck! roll around base of neck!

IMU

lh

Head and Neck Model

! why? there is not always positional tracking! this gives some
motion parallax

! can extend to torso, and using other kinematic constraints

! integrate into pipeline as

Mview = T 0,!ln ,!lh() "R "T 0,ln ,lh() "T !eye()

Must read: course notes on IMUs!

