Inertial Measurement Units II

Gordon Wetzstein
Stanford University

EE 267 Virtual Reality
Lecture 10

stanford.edu/class/ee267/
Polynesian Migration
Lecture Overview

- short review of coordinate systems, tracking in flatland, and accelerometer-only tracking
- rotations: Euler angles, axis & angle, gimbal lock
- rotations with quaternions
- 6-DOF IMU sensor fusion with quaternions
- primary goal: track orientation of head or device
- inertial sensors required pitch, yaw, and roll to be determined
from lecture 2:

\[v_{clip} = M_{proj} \cdot M_{view} \cdot M_{model} \cdot v \]

vertex in clip space
from lecture 2:

vertex in clip space

\[v_{\text{clip}} = M_{\text{proj}} \cdot M_{\text{view}} \cdot M_{\text{model}} \cdot v \]

projection matrix
view matrix
model matrix

rotation
translation

\[M_{\text{view}} = R \cdot T(\text{-eye}) \]
Euler angles

\[M_{\text{view}} = R \cdot T(-\text{eye}) \]

\[R = R_z(-\theta_z) \cdot R_x(-\theta_x) \cdot R_y(-\theta_y) \]

- rotation
- translation

roll
pitch
yaw
2 important coordinate systems:

\[M_{\text{view}} = R \cdot T \left(-\text{eye} \right) \]

\[R = R_z \left(-\theta_z \right) \cdot R_x \left(-\theta_x \right) \cdot R_y \left(-\theta_y \right) \]

- \(\theta_x \): roll
- \(\theta_y \): pitch
- \(\theta_z \): yaw

Euler angles
Gyro Integration aka *Dead Reckoning*

- from gyro measurements to orientation – use Taylor expansion

\[
\theta(t + \Delta t) \approx \theta(t) + \frac{\partial}{\partial t}\theta(t)\Delta t + \varepsilon, \quad \varepsilon \sim O(\Delta t^2)
\]

- want: angle at current time step
- have: angle at last time step
- have: time step
- have: gyro measurement (angular velocity)
- approximation error!
Orientation Tracking in *Flatland*

- problem: track 1 angle in 2D space
- sensors: 1 gyro, 2-axis accelerometer
- sensor fusion with complementary filter, i.e. linear interpolation:

\[\theta^{(t)} = \alpha \left(\theta^{(t-1)} + \tilde{\omega} \Delta t \right) + (1 - \alpha) \text{atan2} \left(\tilde{a}_x, \tilde{a}_y \right) \]

- no drift, no noise!
Tilt from Accelerometer

- assuming acceleration points up (i.e. no external forces), we can compute the tilt (i.e. pitch and roll) from a 3-axis accelerometer

\[
\hat{a} = \frac{\vec{a}}{||\vec{a}||} = R \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = R_z(-\theta_z) \cdot R_x(-\theta_x) \cdot R_y(-\theta_y) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix}
-\cos(-\theta_x)\sin(-\theta_z) \\
\cos(-\theta_x)\cos(-\theta_z) \\
\sin(-\theta_x)
\end{pmatrix}
\]

\[
\theta_x = -\text{atan2}(\hat{a}_z, \text{sign}(\hat{a}_y) \cdot \sqrt{\hat{a}_x^2 + \hat{a}_y^2})
\]

\[
\theta_z = -\text{atan2}(-\hat{a}_x, \hat{a}_y) \text{ both in rad}
\]
Euler Angles and Gimbal Lock

• so far we have represented head rotations with Euler angles: 3 rotation angles around the axis applied in a specific sequence

• problematic when interpolating between rotations in keyframes (in computer animation) or integration → singularities
The Guerrilla CG Project, The Euler (gimbal lock) Explained – see: https://www.youtube.com/watch?v=zC8b2Jo7mno
Rotations with Axis-Angle Representation and Quaternions
Rotations with Axis and Angle Representation

- solution to gimbal lock: use axis and angle representation for rotation!
- simultaneous rotation around a normalized vector \(\mathbf{v} \) by angle \(\theta \)
- no “order” of rotation, all at once around that vector
Quaternions

• think about quaternions as an extension of complex numbers to having 3 (different) imaginary numbers or fundamental quaternion units i,j,k

\[q = q_w + iq_x + jq_y + kq_z \]

\[i^2 = j^2 = k^2 = ijk = -1 \]

\[ij = -ji = k \]

\[ki = -ik = j \]

\[jk = -kj = i \]
Quaternions

• think about quaternions as an extension of complex numbers to having 3 (different) imaginary numbers or fundamental quaternion units i, j, k

\[q = q_w + iq_x + jq_y + kq_z \]

• quaternion algebra is well-defined and will give us a powerful tool to work with rotations in axis-angle representation in practice
Quaternions

- axis-angle to quaternion (need normalized axis \mathbf{v})

$$q(\theta, \mathbf{v}) = \cos\left(\frac{\theta}{2}\right) + i\, v_x \sin\left(\frac{\theta}{2}\right) + j\, v_y \sin\left(\frac{\theta}{2}\right) + k\, v_z \sin\left(\frac{\theta}{2}\right)$$

where

- $q_w = \cos\left(\frac{\theta}{2}\right)$
- $q_x = i\, v_x \sin\left(\frac{\theta}{2}\right)$
- $q_y = j\, v_y \sin\left(\frac{\theta}{2}\right)$
- $q_z = k\, v_z \sin\left(\frac{\theta}{2}\right)$
Quaternions

- axis-angle to quaternion (need normalized axis v)

$$q(\theta, v) = \cos\left(\frac{\theta}{2}\right) + i v_x \sin\left(\frac{\theta}{2}\right) + j v_y \sin\left(\frac{\theta}{2}\right) + k v_z \sin\left(\frac{\theta}{2}\right)$$

- valid rotation quaternions have unit length

$$\|q\| = \sqrt{q_w^2 + q_x^2 + q_y^2 + q_z^2} = 1$$
Two Types of Quaternions

• **vector quaternions** represent 3D points or vectors \(\mathbf{u} = (u_x, u_y, u_z) \) can have arbitrary length

\[
q_u = 0 + i u_x + j u_y + k u_z
\]

• **valid rotation quaternions** have unit length

\[
\|\mathbf{q}\| = \sqrt{q_w^2 + q_x^2 + q_y^2 + q_z^2} = 1
\]
Quat**e**rnion Algebra

- quaternion addition:
 \[q + p = (q_w + p_w) + i(q_x + p_x) + j(q_y + p_y) + k(q_z + p_z) \]

- quaternion multiplication:
 \[qp = (q_w + iq_x + jq_y + kq_z)(p_w + ip_x + jp_y + kp_z) \]
 \[= (q_w p_w - q_x p_x - q_y p_y - q_z p_z) + i(q_w p_x + q_x p_w + q_y p_z - q_z p_y) + j(q_w p_y - q_x p_z + q_y p_w + q_z p_x) + k(q_w p_z + q_x p_y - q_y p_x + q_z p_w) \]
Quaternion Algebra

- quaternion conjugate: \(q^* = q_w - iq_x - jq_y - kq_z \)
- quaternion inverse: \(q^{-1} = \frac{q^*}{\|q\|^2} \)
- rotation of vector quaternion \(q_u \) by \(q \) : \(q'_u = qq_u q^{-1} \)
- inverse rotation: \(q_u = q^{-1} q'_u q \)
- successive rotations by \(q_1 \) then \(q_2 \) : \(q'_u = q_2 q_1 q_u q_1^{-1} q_2^{-1} \)
Quaternion Algebra

- detailed derivations and reference of general quaternion algebra and rotations with quaternions in course notes

- please read *course notes* for more details!
Quat ornion-based
6-DOF Orientation Tracking
Quatetion-based Orientation Tracking

1. 3-axis gyro integration

2. computing the tilt correction quaternion

3. applying a complementary filter
Gyro Integration with Quaternions

- start with initial quaternion: \(q^{(0)} = 1 + i0 + j0 + k0 \)

- convert 3-axis gyro measurements \(\vec{\omega} = (\tilde{\omega}_x, \tilde{\omega}_y, \tilde{\omega}_z) \) to instantaneous rotation quaternion as

 avoid division by 0!

\[
q_{\Delta} = q\left(\Delta t \| \vec{\omega} \|, \frac{\vec{\omega}}{\| \vec{\omega} \|} \right)
\]

- integrate as

\[
q_{\omega}^{(t+\Delta t)} = q^{(t)} q_{\Delta}
\]
Gyro Integration with Quaternions

- integrated gyro rotation quaternion $q_{\omega}^{(t+\Delta t)}$ represents rotation from body to world frame, i.e.

$$q_u^{(\text{world})} = q_{\omega}^{(t+\Delta t)} q_u^{(\text{body})} q_{\omega}^{(t+\Delta t)^{-1}}$$

- last estimate $q^{(t)}$ is either from gyro-only (for dead reckoning) or from last complementary filter

- integrate as

$$q_{\omega}^{(t+\Delta t)} = q^{(t)} q_\Delta$$
Tilt Correction with Quaternions

• assume accelerometer measures gravity vector in body (sensor) coordinates

\[\tilde{a} = \left(\tilde{a}_x, \tilde{a}_y, \tilde{a}_z \right) \]

• transform vector quaternion of \(\tilde{a} \) into current estimation of world space as

\[
q_a^{(\text{world})} = q_{\omega}^{(t+\Delta t)} q_a^{(\text{body})} q_{\omega}^{(t+\Delta t)^{-1}}
\]

\[
q_a^{(\text{body})} = 0 + i\tilde{a}_x + j\tilde{a}_y + k\tilde{a}_z
\]
Tilt Correction with Quaternions

• assume accelerometer measures gravity vector in body (sensor) coordinates \(\tilde{a} = (\tilde{a}_x, \tilde{a}_y, \tilde{a}_z) \)

• transform vector quaternion of \(\tilde{a} \) into current estimation of world space as

\[
q_a^{\text{(world)}} = q_{\omega}^{(t+\Delta t)} q_a^{\text{(body)}} q_{\omega}^{(t+\Delta t)^{-1}}
\]

• if gyro quaternion is correct, then accelerometer world vector points up, i.e.

\[
q_a^{\text{(world)}} = 0 + i0 + j9.81 + k0
\]
Tilt Correction with Quaternions

- gyro quaternion likely includes drift
- accelerometer measurements are noisy and also include forces other than gravity, so it’s unlikely that accelerometer world vector actually points up

if gyro quaternion is correct, then accelerometer world vector points up, i.e.

\[q_{a}^{(\text{world})} = 0 + i0 + j9.81 + k0 \]
solution: compute tilt correction quaternion that would rotate $q_{a}^{(\text{world})}$ into up direction

how? get normalized vector part of vector quaternion $q_{a}^{(\text{world})}$

$$v = \left(\frac{q_{a_x}^{(\text{world})}}{\|q_{a}^{(\text{world})}\|}, \frac{q_{a_y}^{(\text{world})}}{\|q_{a}^{(\text{world})}\|}, \frac{q_{a_z}^{(\text{world})}}{\|q_{a}^{(\text{world})}\|} \right)$$
Tilt Correction with Quaternions

solution: compute tilt correction quaternion that would rotate $q_a^{(\text{world})}$ into up direction

$$q_t = q\left(\phi, \frac{n}{||n||}\right)$$

$$\begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \cos(\phi) \Rightarrow \phi = \cos^{-1}(v_y)$$

$$n = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -v_z \\ 0 \\ v_x \end{pmatrix}$$
Complementary Filter with Quaternions

• complementary filter: rotate into gyro world space first, then rotate “a bit” into the direction of the tilt correction quaternion

\[
q_c^{(t+\Delta t)} = q\left((1 - \alpha)\phi, \frac{n}{||n||}\right)q_\omega^{(t+\Delta t)} \quad 0 \leq \alpha \leq 1
\]

• rotation of any vector quaternion is then

\[
q_u^{(\text{world})} = q_c^{(t+\Delta t)} q_u^{(\text{body})} q_c^{(t+\Delta t)^{-1}}
\]
Integration into Graphics Pipeline

- compute $q_c^{(t+\Delta t)}$ via quaternion complementary filter first

- stream from microcontroller to PC

- convert to 4x4 rotation matrix (see course notes) $q_c^{(t+\Delta t)} \Rightarrow R_c$

- set view matrix to $M_{\text{view}} = R_c^{-1}$ to rotate the world in front of the virtual camera
Head and Neck Model

Pitch around base of neck!

Roll around base of neck!
Head and Neck Model

- why? there is not always positional tracking! this gives some motion parallax
- can extend to torso, and using other kinematic constraints
- integrate into pipeline as

\[M_{view} = T(0,-l_n,-l_h) \cdot R \cdot T(0,l_n,l_h) \cdot T(-\text{eye}) \]
Must read: course notes on IMUs!