Inertial Measurement Units |

Gordon Wetzstein
Stanford University

EE 267 Virtual Reality

Lecture 10

stanford.edu/class/ee267/

Polynesian Migration

wikipedia

|_ecture Overview

short review of coordinate systems, tracking in flatland, and
accelerometer-only tracking

rotations: Euler angles, axis & angle, gimbal lock
rotations with quaternions

6-DOF IMU sensor fusion with quaternions

oculus.com

primary goal: track
orientation of head or
device

inertial sensors required
pitch, yaw, and roll to be
determined

A from lecture 2:
k) Yaw : .
vertex in clip space vertex
Vclip — Mproj . Mview Mmodel "V

oculus.com f

A from lecture 2:
k) Yaw : .
vertex in clip space vertex
Vclip — Mproj . Mview Mmodel "V

U ¢ ¢

projection matrix ~ view matrix model matrix

Pitch

Roll rotation translation
v oy

‘ X M, =R-T(—eye)

view eye

oculus.com /

A Euler angles

rotation translation

v oy
=R-T(—eye)
¢

view

R=R(-6.)-R,(-6,)-R,(-6,)

X

roll pitch yaw

A Euler angles

2 important
coordinate systems:

body/sensor world/inertial
frame frame

Gyro Integration aka Dead Reckoning

« from gyro measurements to orientation — use Taylor expansion

have: angle at have:
last time step time step

1 |
O(1+Ar)=0(r)+ %O(f)m te, £~0(Ar)
c%:t?ﬂ?ele;etp = Q) aprroximation error!

1

have: gyro measurement
(angular velocity)

9(1) _ a(e(z—l) + d)At) + (1 — a)atanZ(&x,&y)

Orientation Tracking in Flatland

problem: track 1 angle in 2D space

sensors: 1 gyro, 2-axis
accelerometer

sensor fusion with complementary
filter, i.e. linear interpolation:

no drift, no noise!

IMU

RPN

VRduino

Tilt from Accelerometer

* assuming acceleration points up (i.e. no external forces), we can
compute the tilt (i.e. pitch and roll) from a 3-axis accelerometer

_ 0 0
a= 42 R 1 = Rz (_Gz) Rx (_OX) Ry (_Hy) 1
el 0 0

—cos(—QX)Siﬂ(—Gz) 0. = —atan2(&z,sign(&y)-m)

— —0 =
cos(x)cOS(z) 91 _ —atan2(—CAlx .) both in rad
sin(—@x) y

Euler Angles and Gimbal Lock

so far we have represented head rotations with Euler angles: 3
rotation angles around the axis applied in a specific sequence

problematic when interpolating between rotations in keyframes
(in computer animation) or integration = singularities

Gimbal Lock

EULER EXPLAINED

The Guerrilla CG Project, The Euler (gimbal |OCk) Explained — S€E€.! https://www.youtube.com/watch?v=zc8b2Jo7mno

Rotations with Axis-Angle Representation
and Quaternions

Rotations with Axis and Angle Representation

rotation!

* simultaneous rotation around a
normalized vector v by anglef

 no “order” of rotation, all at once around
that vector

solution to gimbal lock: use axis and angle representation for

Y

V. = (U.'zra Uy, 'Uz)

Quaternions

think about quaternions as an extension of complex numbers
to having 3 (different) imaginary numbers or fundamental
quaternion units /&

q=qw+iqx+qu+qu

Quaternions

think about quaternions as an extension of complex numbers
to having 3 (different) imaginary numbers or fundamental
quaternion units /&

q=4,tiq.+jq,+kq.

quaternion algebra is well-defined and will give us a powerful
tool to work with rotations in axis-angle representation in
practice

Quaternions

« axis-angle to quaternion (need normalized axis V)

(6 v)=cos(g)+iv sin(g)+ v sin(9j+kv sin(g)
1) A Y AR S Y R B

%/_J . ~ J . ~ _J . ~
4y qx qy q;

Quaternions

« axis-angle to quaternion (need normalized axis V)

q(0.v)= Cos(g) +iv, sin(gj +Jv, Sin(g) +kv, sin(g)

%/_J . ~ J . ~ _J . ~
4w qx 4qy q;

« valid rotation quaternions have unit length

ldl=\a’+q* +q> +q> =1

Two Types of Quaternions

* vector quaternions represent 3D points or vectors u=(uy,u,,u,)
can have arbitrary length

q,=0+iu +ju, +ku,

« valid rotation quaternions have unit length

ldl=\a’+q* +q> +q> =1

Quaternion Algebra

« quaternion addition:

g+p=(q,+p,)+i(a,+p,)+ila,+p,)+k(q.+p.)

« quaternion multiplication:

QP=Qh+ﬂb+ﬂb+hﬂXPw+@y+ﬂ5+@%)
= (q,p.—4.p,— 4,0, —4.P.)+
d%m+%mﬁ%m—%m%-
K%m—%m+%m+%m%-

H%m+%m—%m+%m}+

Quaternion Algebra

quaternion conjugate: g =q, —iq. — Jq, —kq.
PR , -1 _ q*
guaternion inverse: q =——>
lal
rotation of vector quaternion g, by g q',=499,9"
— 1
inverse rotation: 9.=49 9.9

successive rotations by g, then ¢, : q'.=9,4,4, ql‘l %_1

Quaternion Algebra

« detailed derivations and reference of general quaternion
algebra and rotations with quaternions in course notes

« please read course notes for more details!

Quaternion-based
6-DOF Orientation Tracking

Quaternion-based Orientation Tracking

1. 3-axis gyro integration
2. computing the tilt correction quaternion

3. applying a complementary filter

Gyro Integration with Quaternions
- start with initial quaternion: q(o) =14+i0+ jO+ kO

» convert 3-axis gyro measurements @=(a,.®,.0,) to
instantaneous rotation quaternion as

- @

avoid division by 0! g,=q At| |a) —
)

angle rotation

axis

. integrate as qgwt) =(q (t)qA

Gyro Integration with Quaternions

(1+At)

integrated gyro rotation quaternion ¢,

from body to world frame, i.e.

represents rotation

(world) __ q(t+At) (body) _(t+A1)”

u @ u w

last estimate q(t) is either from gyro-only (for dead reckoning)
or from last complementary filter

integrate as qurAt) = q(t)q A

Tilt Correction with Quaternions

assume accelerometer measures gravity vector in body

(sensor) coordinates &:(& G &)

x? y’ Z

transform vector quaternion of g into current estimation of
world space as

(world) __ (t+A1) (body) (1+Ar)™

a B X0) a 0)
(body) _ .~ . ~ ~
. =0+ia + ja, +ka

Tilt Correction with Quaternions

assume accelerometer measures gravity vector in body
(sensor) coordinates ~ (~ ~ o~)

a=\a,.a,,a,

transform vector quaternion of g into current estimation of
world space as

(world) __ (t+A1) (body) (1+Ar)™

a 0 a)

if gyro quaternion is correct, then accelerometer world vector

points up, I.e. q (world) O+l0+]9 1+ k0O

a

Tilt Correction with Quaternions

gyro quaternion likely includes drift

accelerometer measurements are noisy and also include
forces other than gravity, so it’s unlikely that accelerometer
world vector actually points up

if gyro quaternion is correct, then accelerometer world vector

points up, I.e. q (world) =0+i0+ j9.81+k0

a

Tilt Correction with Quaternions
solution: compute tilt correction quaternion that would rotate qilworld)
into up direction

how? get normalized vector part of vector quaternion q(w"ﬂd)

(world) (world) (world)
(y orld)

Ay a,
(world) ([’ (world)
a a

v:‘

Tilt Correction with Quaternions

solution: compute tilt correction quaternion that would rotate ngOﬂd>
into up direction
n
q, = QK¢’_)
Zl
Y
V. 0)
Yy 1 |=cos(¢) = ¢= Cos_l(vy)
v, 0 V = (Vg,0y,0z)

Complementary Filter with Quaternions

« complementary filter: rotate into gyro world space first, then
rotate “a bit” into the direction of the tilt correction quaternion

(t+A1) _ n (t+Ar)
9. =4 (1—0{)¢, nH 40 O0<ax<l
- rotation of any vector quaternion is then ¢\ = qg”m)qftb"dﬂqyﬂf)_l

Integration into Graphics Pipeline

(1+At)

compute g via quaternion complementary filter first

stream from microcontroller to PC

convert to 4x4 rotation matrix (see course notes) ¢ = R

set view matrixto M . = R_' to rotate the world in front of the
virtual camera

Head and Neck Model

O
>\

——

[2 >
X
pitch around base of neck! roll around base of neck!

Head and Neck Model

why? there is not always positional tracking! this gives some
motion parallax

can extend to torso, and using other kinematic constraints

integrate into pipeline as

Mview = T(O’_ln ’_lh) R . T(O’ln ’lh). T(_eye)

Must read: course notes on IMUSs/

