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Overview

overview of positional tracking
camera-based tracking

HTC’s Lighthouse

VRduino — an Arduino for VR, specifically designed for EE 267
by Keenan Molner

pose tracking with VRduino using homographies



What are we tracking?

Goal: track pose of headset, controller, ...

What is a pose?
« 3D position of the tracked object

« 3D orientation of the tracked object, e.g. using
quaternions or Euler angles

Why? So we can map the movement of our head to the motion of the
camera in a virtual environment — motion parallax!



Overview of Positional Tracking

“inside-out tracking”: camera or sensor is located on HMD, no
need for other external devices to do tracking

» simultaneous localization and mapping (SLAM) — classic
computer & robotic vision problem (beyond this class)

“outside-in tracking”: external sensors, cameras, or markers are
required (i.e. tracking constrained to specific area)

« used by most early VR headsets, but everyone now uses
insight-out tracking!



Marker-based Tracking

« seminal papers by Rekimoto 1998 and Kato & Billinghurst 1999
» widely adopted after introduced by ARToolKit
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Marker-based Tracking

ARToolKit OpenCV marker tracking



Google’s Project Tango

Inside-out Tracking




Google’s Project Tango

4AMP Camera

2x Computer Vision Processors

/ Integrated Depth Sensing

Po——— Motion Tracking Camera

also used but not shown: IMU

problem: SLAM via sensor fusion



Inside-out Tracking

marker-less inside-out tracking used by Microsoft HoloLens,
Oculus Quest, Magic Leap, Apple Vision Pro, ...

required by all untethered VR/AR systems

if you need it for your own HMD, consider using Intel’s
RealSense (small & has SDK)

if you want to learn more about SLAM, take a 3D computer
vision or robotic vision class, e.g. Stanford CS231A



“Outside-in Tracking”

mechanical tracking
ultra-sonic tracking
magnetic tracking
optical tracking
GPS

WIFI positioning

marker tracking



Positional Tracking - Mechanical

some mechanical
linkage, e.g.

» fakespace BOOM

* microscribe




Positional Tracking - Mechanical

Pros:
« super low latency

* Vvery accurate

cons:
e cumbersome

« “wired” by design



Positional Tracking — Ultra-sonic

« 1 transmitter, 3 receivers = triangulation

lvan Sutherland’s “Ultimate Display”

2 \
Logitech 6DOF



Positional Tracking — Ultra-sonic

pros:

« can be light, small, inexpensive

cons:
 line-of-sight constraints
» susceptible to acoustic interference

* |low update rates



Positional Tracking - Magnetic

reasonably good accuracy
position and orientation

3 axis magnetometer in sensors

need magnetic field generator (AC, DC, ...),
e.g. Helmholtz coill

3 axis Helmholtz coil
www.directvacuum.com

magnetic field has to oscillate and be sync’ed
with magnetometers



Positional Tracking - Magnetic

Pros:
« small, low cost, low latency sensors

* no line-of-sight constraints

cons:

3 axis Helmholtz coil
www.directvacuum.com

« somewhat small working volume
« susceptible to distortions of magnetic field

* not sure how easy it is to do this untethered (need to sync)



Positional Tracking - Magnetic

Magic Leap One controller tracking:
* magnetic field generator in controller

* magnetometer in headset

https://www.ifixit.com/Teardown/Magic+Leap+One+Teardown/112245



Positional Tracking - Optical

« track active (near IR) LEDS —m
with cameras

OR

» track passive retro-reflectors
with IR illumination around
camera

) ] Oculus Rift
° both OCU'US R|ft and HTC V|Ve https://www.ifixit.com/Teardown/Oculus+Rift+C

V1+Teardown/60612

come with optical tracking






Understanding Pose Estimation - Triangulation

3D point

 for tracking individual
3D points, multi-camera
setups usually use
triangulation

projectio

« this does not give us
the pose (rotation &
translation) of camera
or object yet



Understanding Pose Estimation

3D points in object coordinates
for pose estimation, - .
need to track multiple '
points with known
relative 3D coordinates!

2D
projections



Understanding Pose Estimation

* when object is closer,
projection is bigger

2D
projections



Understanding Pose Estimation

« when object is father,
projection is smaller

...and soon ... oD

projections

Estimating 6-DoF pose from 2D projections is known as the

Perspective-n-point problem!



Understanding Pose Estimation

1. how to get projected
2D coordinates”?

2. image formation

3. estimate pose with

. 2D
linear homography projections
method

4. estimate pose with
nonlinear Levenberg-
Marquardt method
(next class)



Understanding Pose Estimation

1. how to get projected « HTC Lighthouse
2D coordinates” .
* VRduino



HTC Lighthouse

Time since last Tias
Deltat X 4.570 mS=
Deltat Y 4.618 MS =

https://www.youtube.com/watch?v=J54dotTt7k0



HTC Lighthouse

https://www.youtube.com/watch?v=J54dotTt7k0



HTC Lighthouse — Base Station

http://gizmodo.com/this-is-how-valve-s-amazing-lighthouse-tracking-technol-1705356768



HTC Lighthouse — Base Station

important specs:

* runs at 60 Hz
* i.e. horizontal & vertical update combined 60 Hz

* broadband sync pulses in between each laser sweep
(i.,e. at 120 Hz)

e each laser rotates at 60 Hz, but offset in time

« useable field of view: 120 degrees



HTC Lighthouse — Base Station

e can use up to 2 base stations simultaneously via time-adivision
multiplexing (TDM)

« base station modes:
A: TDM slave with cable sync
B: TDM master
C: TDM slave with optical sync




HTC Lighthouse — Base Station

sync pulse periodically emitted (120 times per second)
each sync pulse indicates beginning of new sweep

length of pulse also encodes additional 3 bits of information:

Name skip data axis length (ticks) length (ps)

jo 0 0 0 3000 62.5

kO 0 0 1 3500 72.9

. . . i 0 1 0 4000 83.3
axis: horizontal or vertical sweep to follow

k1 0 1 1 4500 93.8

skip: if 1, then laser is off for following sweep i2 1 0 0 5000 104

data: data bits of consecutive pulses yield OOTX 2 ! S 1 5500 15

frame i3 1 1 0 6000 125

k3 1 1 1 6500 135

https://github.com/nairol/LighthouseRedox/blob/master/docs/Light%20Emissions.md#sync-pulse



VRduino

* inthis class, we use the HTC Lighthouse base stations but
implement positional tracking (i.e., pose estimation) on the
VRduino

« VRduino is a shield (hardware add-on) for the Arduino Teensy
3.2; custom-designed for EE 267 by Keenan Molner



VRduino

S-ecL ; =
Oroee 2
QINT";I;
'} NCS zI—vx
G FSYNC
o 10 071
VRduino
Rev 0.3




VRduino

)
) INT s
Y.
@ Nes—,
G FSYNC

IMU
Teensy 3.2



VRduino

Lighthouse
Select




VRduino

Photodiode O Photodiode 1

--------------

— on . )
Photodiode 3 otodiode



VRduino

x=-42mm, y=25mm x=42mm, y=25mm

) ADDHs 1)
D INT 3;:1 —
@ nes—{
67 FSYNC

x=-42mm, y=-25mm x=42mm, y=-25mm



VRduino




VRduino




VRduino




VRduino

Pin
Breakout

Oroes 2
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'} NCS zI—vx
& FSYNC
o 10 071
VRduino
Rev 0.3




VRduino

3.3V power, 200mA MAX
digital R/W, Serial, cap. sense SPI, Serial, digital R/W
digital R/W
SPI, analog read, digital R/W
SPI, analog read, digital R/W
12C, analog read, digital R/W
12C, analog read, digital R/W

5V power, 500mA MAX

digital R/W, Serial, cap. sense
digital R/W

digital R/'W, PWM, CAN
digital R/'W, PWM, CAN
digital R/W, Serial, SPI

For more details, see Lab Writeup



Pose Estimation with the VRduino

timing of photodiodes reported in Teensy “clock ticks” relative
to last sync pulse

Teensy usually runs at 48 MHz, so 48,000,000 clock ticks per
second



How to Get the 2D Coordinates”?

at time of respective sync pulse,
laser is at 90° horizontally and -
90° vertically

each laser rotates 360° in 1/60 sec

Side View

@
b

laser sweep
direction

current laser
position _g(°

OO



How to Get the 2D Coordinates”?

at time of respective sync pulse,
laser is at 90° horizontally and -
90° vertically

each laser rotates 360° in 1/60 sec

Top View Side View

OO

optical axis

(principle direction) @
laser sweep

direction Y
laser sweep
direction

S
@ X current laser current laser
|Z position g(° position _g(°



How to Get the 2D Coordinates”?

at time of respective sync pulse,

laser is at 90°

horizontally and -

90° vertically
each laser rotates 360° in 1/60 sec
Top View
00
optical axis

(principle direction)
laser sweep
direction

@~

current laser
position g(°

convert from ticks to angle first and

then to relative
unit distance

Top View

(04

—

position on plane at

3D
Diy

laser sweep angle
when it hits the

fﬁy photodiode

starting laser
position  g()°



How to Get the 2D Coordinates”?

« convert from ticks to angle first and

raw number of ticks from photodiode then to relative position on plane at
l unit distance
ick.
At[sec]= #licks ok .
48,000,000[ ic s} « CPU speed Top View
SE€C o

- A

3D
Diy

laser sweep angle
when it hits the

2D i
Pivy photodiode

x  starting laser
|Z position  g()°



How to Get the 2D Coordinates”?

« convert from ticks to angle first and

raw number of ticks from photodiode then to relative position on plane at
l unit distance
#tick
At[sec]= e P .
48,000,000[ ic s} « CPU speed Top View
SE€C o

—
3D
Diy

offset from sync pulse

|
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y 4
60 | SeC
o] .
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How to Get the 2D Coordinates”?

(04
pzzgy = tan( 360[0] 277:)

offset from sync pulse

}
a[o]:_ At[sec] N 360
y 4
/60| 5e¢
ol
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[°]

convert from ticks to angle first and
then to relative position on plane at
unit distance
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How to Get the 2D Coordinates?

Horizontal Sweep Vertical Sweep

At[sec] , 360 Ar[sec] 360

a[]——%o[sﬂ ) )1 =K

360 ° 360 °

]



Understanding Pose Estimation

2. image formation « how 3D points project
into 2D coordinates in a
camera (or a Lighthouse
base station)

« very similar to graphics
pipeline



Image Formation

« image formation is model for mapping 3D points in local “object”
coordinate system to 2D points in “window” coordinates

3D reference point arrangement planar 2D arrangement

local device
frame

reference points
on the device

measured 2D
projections

normalized
camera frame



Image Formation — 3D Arrangement

1. transform 3D point into view space:

c xi

X; 1 0 0 o hy T L
Vi

yic = 0 1 0 B T Ty ty
z
-1 i
0 0 o Tp Ty L 1

“modelview matrix”
3x3 rotation matrix and
translation 3x1 vector

“projection matrix”

This is the homogeneous

coordinate
2. perspective divide: { i J— Wi
y! vy

(3

RS



Image Formation — 2D Arrangement

1. transform 3D point into view space: q
: X,
i 1 0 0 o Ny Ny L i
i |=[ 01 0 S R N
‘ - 0
i 00 ! o s L 1
r, r, t X
1 0 O nooi2 b l
=101 0 By Iy L v, '
e A A L O ,1
x!

2. perspective divide:

7~
< =
Sy =T
N—
Il
:<r: ~§n =~

(3

=8




Image Formation — 2D Arrangement

« all rotation matrices are orthonormal, i.e. ———
Nty =1

rotation R translation T

1 0 O TP
01 O o Iy ||
0 0 -l Fy Ty || !




The Homography Matrix

« all rotation matrices are orthonormal, i.e. ———
Nty =1

rotation R translation T

1 0 O in: T |1 bl by let’s call this
01 0 o T |l =| BB | “homography matrix”
O 0 —1 rSI ”32 tz ]’l7 hg h9




Understanding Pose Estimation

3. estimate pose with
linear homography
method

how to compute the
homography matrix

how to get position and
rotation from that matrix



The Homography Matrix

Turns out that: any homography matrix has only 8 degrees of
freedom — can scale matrix by s and get the same 3D-t0-2D

mapping

« image formation with scaled homography matrix sH

[

sh x.+sh, y. +sh, \s\(hlxi"'hz v, +h
sh, x.+sh, y. +sh, X

=

sh,x . +sh, y. +sh,
Sh7xi+Sh8yi+Sh9 \S\hx+h y1+h

a .

7~ N\
< =
=S BN
N—
Il
==
o T Tn
Il
I
/—\/}ﬂ; ——
==
+ o+
S
< =
+ o+
S
S— N S |

S



The Homography Matrix

e common approach: estimate a scaled version of the
homography matrix, where h, =1

« we will see later how we can get scale factor s

1, r;
1 0 O n T L hy h, b <«— oestimate these 8
7 7 t = A h h homography matrix
O 1 O 21 22 Yy 4 5 6 elements!
0 0 -1 ry Iy I, h, hy 1




Pose Estimation via Homography

* Image formation changes to

xf h h
yi =S| bk
Wl.c h hg

1

homography matrix with

8 unknowns!



Pose Estimation via Homography

* Image formation changes to

hx+hy+h,
hx+hy+1

h,x +hy +h
h,x +h y +1

7~
=R
N——
I
= 2
I




Pose Estimation via Homography

multiply by denominator

><('*

(9

==

o

=

hx+hy+h,

hx+hy+1
h,x +hy +h

h,x+hy +1

o

xl.”(hﬂc,.+hgyl.+1):hlxl.+h2yl.+h3
yi(hx,+hyy,+1)=h,x,+hyy, +h;



Pose Estimation via Homography

* reorder equations
hyx.+hy +h,—h xx'—hgy x' =x
hyx,+hsy +hg—h,x, ¥/ —hgy, ¥/ =y;

@

xl.”(hﬂc,.+hgyl.+1):hlxl.+h2yl.+h3
yi(hx,+hyy,+1)=h,x,+hyy, +h;



Pose Estimation via Homography

8 unknowns (red) but only 2 measurements (blue) per 3D-to-2D
point correspondence

h|x, Hh|y, Hhy— h x, x| = |k |y, |x | =|x]

hx, Hhyy, Hh|= x|y |—hd vy =[]

need at least 4 point correspondences to get to invertible system
with 8 equations & 8 unknowns!

VRduino has 4 photodiodes - need all 4 to compute pose



Pose Estimation via Homography

« solve Ah=b on Arduino using Matrix Math Library via
MatrixInversion function (details in lab)

n n

n
XX TN

x oy 1 0 h, X
0 0 0 x, y 1 —xy -y h, v
x, y 1 0 0 0 —xx3 -yx, h, X,
0 0 0 x, y 1 —x), -y h, Y2
X, 0y, 10 0 0 —xpxf -y} hs ) X}
0 0 0 x; y; 1 —xyi —yyi || e Vi
x, y, 1 0 0 0 —xx; -yx, hy X,
0 0 0 x, vy, 1 —xy -y h A



Get Position from Homography Matrix

« still need scale factor sto get position!

just computed this

v
1 0 0 in T L h hy, h
0O 1 O Ly Ty b, |=s| hy hy h
0 0 -1 Iy Iy L h, hy 1




Get Position from Homography Matrix

« normalize homography to have approx. unit-length columns
for the rotation part, such that 2+ +r2 =1, JR2+r2+r2 =1

2
s =
JIE R+ R+ R+ h +h

1 0 0 o e L hy h, h
0O 1 O Ly Ty b, |=s| hy hy h
0 0 -I ry Iy I, h, hy 1




Get Position from Homography Matrix

 this gives us the position as

1 0 0 o e L hy h, h
0O 1 O Ly Ty b, |=s| hy hy h
0 0 -I ry Iy I, h,  hy




Get Rotation from Homography Matrix

1. get normalized 18t column of 3x3 rotation matrix
2. get normalized 2"@ column via orthogonalization

3. get missing 39 column with cross product

1 0 0 o T L h, h, h,
0O 1 O Ly Ty b, |=s| hy hy h
0 0 -1 ry Iy I, hy hg 1




Get Rotation from Homography Matrix

1. get normalized 18t column of 3x3 rotation matrix

h )

O N

_h7 2
1 0 0 o T h, h, h,
0O 1 O Ly Ty b, |=s| hy hy h
0 0 -1 ry Iy I, h, hy 1




Get Rotation from Homography Matrix

2. get normalized 2"@ column via orthogonalization

SO =

o = O

h, .
el |l =
_hs 21k
h2 h3
hS h6
h




Get Rotation from Homography Matrix

3. get missing 39 column with cross product: r,=1Xr,

« rzthis is guaranteed to be orthogonal to the other two columns

1 0 0 o e L hy h, h
0O 1 O Ly Ty b, |=s| hy hy h
0 0 -I ry Iy I, h, hy 1




Get Rotation from Homography Matrix

i "o N3
 make 3x3 rotation matrix R=(rnrr)=| n

I3y T Iy

« convert to quaternion or Euler angles



Get Rotation from Homography Matrix

« remember Euler angles (with yaw-pitch-roll order):

i1 Ti2 T13 cos(f,) —sin(6,) O 1 0 0 cos(f,) 0 sin(6,)
ro1 To2 To3 | = | sin(f;) cos(6,) O 0 cos(f;) —sin(6;) 0 1 0
T31 T32 733 0 0 1 0 sin (9_-,;) COSs (91) —sin (Gy) 0 cos (Gy)

R R.(6.) R.(6) R, (6,)
( cos (0y) cos (0) — sin (0,) sin (6,) sin (0,) —cos (6;) sin(6,) sin () cos (6.) + sin (6;) cos (6,) sin (6) )

cos (6y) sin (6) + sin (6;) sin (6,) cos (0;) cos (0)cos(0,) sin(6,)sin(6,) — sin (6,) cos (6,) cos (6.)
—cos (6) sin (6,) sin (6;) cos (6;) cos (6y)

« get angles from 3x3 rotation matrix:

r3o = sin (6;) = 0, = sin™! (r3p) = asin (r3)

7"31 COS (0 ) sin (Gy) -1 31

— = = —tan (0 0= - ) = -

= s (6) cos (8,) an (6,) => 0, = tan = atan2 (—rsy,733)
riz _ cos(fy)sin(0.) oo rm2\

e 6.)cos (8,) — tan (0,) = 0, = tan = atan2 (—ry2,722)



Temporal Filter to Smooth Noise

* poOsSe estimation is very sensitive to noise in the measured 2D
coordinates!

- estimated position and especially rotation may be noisy

« apply a simple temporal filter with weight o to smooth the pose
at time step A:

(k-1)
filtered

+(1-0)(6,.6,.0,.1,.1,.t.)

sy .
LTXTY T2 Junfiltered

(0 0.0..t t,t)(k) =oc(6 0.0..t t,t)

X2EYPELXNY 2 filvered XTyr Tty

« smaller o0 = less filtering, larger o 2 more smoothing



Pose Estimation via Homographies — Step-by-Step

in each loop() call of the VRduino:

1.
2.

get timings from all 4 photodiodes in “ticks”

convert “ticks” to degrees and then to 2D coordinates on plane
at unit distance (i.e. getx;,y;" )

populate matrix A using the 2D and 3D point coordinates
estimate homography as h=A"b

get position £, £, £, and rotation, e.g. in Euler angles from the
estimated homography

apply temporal filter to sSTooth out noise



Must read. course notes on tracking!



Understanding Pose Estimation

4. estimate pose with « advanced topic
nonlinear Levenberg-
Marquardt method
(next class)

« all details of this are also
derived in course notes





