Frontiers of VR I

Cinematic VR, spatial sound, and the vestibular system

Gordon Wetzstein Stanford University

EE 267 Virtual Reality

Lecture 13

stanford.edu/class/ee267/

Apple Vision Pro – Spatial Video

12MP Telephoto camera

120 mm focal length 5x optical zoom f/2.8 aperture

12MP Ultra Wide camera

13 mm focal length 120° field of view f/2.2 aperture

48MP Main camera

24 mm focal length 2.44 µm quad pixel f/1.78 aperture

Apple iPhone 15 pro max

How it probably works

Step 1: Monocular Depth Estimation

Step 2: View Extrapolation (warp & inpaint)

- Ranftl et al., "Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer", 2019
- Ke et al,, "Marigold: Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation", CVPR 2024
- Gui et al., "DepthFM: Fast Monocular Depth Estimation with Flow Matching", 2024

 Srinivasan et al., "Pushing the Boundaries of View Extrapolation with Multiplane Images", CVPR 2019

Panoramic Imaging and Cinematic VR

Jaunt VR

Jaunt VR

Lytro

Samsung

Panorama

Panorama

Panorama

Panorama

Panorama

mono & head rotation

1 center of projection!

Panorama

mono & head rotation

1 center of projection!

Panorama

mono & head rotation

1 center of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

stereo & head rotation

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

stereo & head rotation

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

stereo & head rotation

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

1 center of projection!

2 centers of projection!

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

1 center of projection!

2 centers of projection!

Panorama v Stereo Movie v Stereo Panorama

Stereo Panorama

stereo & head rotation

Panorama v Stereo Movie v Stereo Panorama

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

stereo & head rotation

horizontal-only parallax

Introduction to Spatial Sound

Overview

- what is sound? how do we synthesize it?
- the human auditory system
- stereophonic sound
- spatial audio of point sound sources
- surround sound
- ambisonics

What is Sound?

• "sound" is a pressure wave propagating in a medium

• speed of sound is $c = \sqrt{\frac{K}{\rho}}$ where *c* is velocity, ρ is density of medium and *K* is elastic bulk modulus

- in air, speed of sound is 340 m/s
- in water, speed of sound is 1,483 m/s

How do we Synthesize Sound?

https://www.youtube.com/watch?v=aDrs6EieFCM

Producing Sound

- Sound is longitudinal vibration of air particles
- Speakers create wavefronts by physically compressing the air, much like one could a slinky

Primary auditory cortex

wikipedia

• hair receptor cells pick up vibrations

- Human hearing range: ~20–20,000 Hz
- Variation between individuals
- Degrades with age

Hearing Threshold in Quiet 20 AGE 60 DYN/CM² PRESSURE 50. **2**C 40 **4**C 30 09 - L SOUND (db Rel 80 -ЮC 20 50 100 200 500 1000 5000 20000 FREQUENCY (C/S)

- human hearing range:
 ~20 20,000 Hz
- variation between individuals and changes with age

			10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz
	Tuna	50 Hz-1.1 kHz	(4.5 8va)					
	Chicken	125 Hz-2 kHz	(4.0 8va)					
	Goldfish	20 Hz-3 KHz	(7.2 8va)					
	Buillirog	100 HZ-3 KHZ	(4.9 8va)					
	Troo frog	50 HZ-4 KHZ	(0.5 ova)					
	Canany	250 Hz 8 kHz	(0.5 0va)			-		
	Cockatiel	250 Hz-8 kHz	(5.0.8va)					
	Parakeet	200 Hz-8.5 kHz	(5.4 8va)					
	Elephant	17 Hz-10.5 kHz	(9.3 8va)	1 1 1 1				
	Owl	200 Hz-12 kHz	(5.9 8va)					
>	Human	31 Hz-19 kHz	(9.3 8va)					
r	Chinchilla	52 Hz-33 kHz	(9.3 8va)					
	Horse	55 Hz-33.5 kHz	(9.3 8va)					
	Cow	23 Hz-35 kHz (10.6 8va)	0 0 0				
	Raccoon	100 Hz-40 KHz	(8.6 8va)					
	Sneep	125 HZ-42.5 KHZ	(8.4 8Va)					
	Forrot	04 HZ-44 KHZ	(9.4 ova)					
	Hedgebog	250 Hz / 5 kHz	(758va)					
	Guinea nig	47 Hz-49 kHz (10.0.8va)					
	Rabbit	96 Hz-49 kHz	(9.0 8va)			3		
	Sea lion	200 Hz-50 kHz	(8.0 8va)					
	Gerbil	56 Hz-60 kHz (10.1 8va)					
	Opossum	500 Hz-64 kHz	(7.0 8va)					
	Albino rat	390 Hz-72 kHz	(7.5 8va)					
	Hooded rat	530 Hz-75 kHz	(7.1 8va)					
	Cat	55 Hz-// KHz (10.5 8va)					
	Mouse	900 HZ-/9 KHZ	(6.4 8Va)					
	Little brown bat	10.5 KHZ-115 KHZ	(5.5 ova)					
	Bottlenose dolph	in 150 Hz-125 KHZ	10.0 8(a)					
	Pornoise	75 Hz-150 kHz	11 0 8va)					
	i or house	, 5 HZ-150 KHZ		CCCC	C C C	C C C		CC
			õ	1234	5 6 7	8 9 101	1 12 13 14	15 16

Bone Conduction

• can stimulate eardrum mechanically to create the illusion of audio, e.g. with bone conduction

http://www.goldendance.co.jp/English/boneconduct/01.html

Stereophonic Sound

- mainly captures differences between the ears:
 - interaural time difference
 - amplitude differences from body shape (nose, head, neck, shoulders, ...)

Stereophonic Sound Recording

• use two microphones

• A-B techniques captures differences in time-of-arrival

• other configurations work too, capture differences in amplitude

- models phase and amplitude differences for all possible sound directions parameterized by azimuth θ and elevation ϕ
- can be measured with two microphones in ears of mannequin & speakers all around

Zhong and Xie, "Head-Related Transfer Functions and Virtual Auditory Display"

- CIPIC HRTF database: http://interface.cipic.ucdavis.edu/sound/hrtf.html
- elevation: -45° to 230.625°, azimuth: -80° to 80°
- need to interpolate between discretely sampled directions

- measuring the HRIR
 - ideal case: scaled & shifted Dirac peaks

- measuring the HRIR
 - ideal case: scaled & shifted Dirac peaks
 - in practice: more complicated, includes scattering in the ear, sholders etc.

- measuring the HRIR
 - need one temporally-varying function for each angle
 - total of $2 \cdot N_{\theta} \cdot N_{\phi} \cdot N_{t}$ samples, where $N_{\theta,\phi,t}$ is the number of samples for azimuth, elevation, and time, respectively

$$hrir_l(\theta,\phi,t)$$
$$hrir_r(\theta,\phi,t)$$

Head-related Impulse Response (HRIR) applying the HRIR:

- given a mono sound source s(t) and it's 3D position
- 1. compute (θ_L, ϕ_L) and (θ_R, ϕ_R) relative to center of listener

Head-related Impulse Response (HRIR) applying the HRIR:

- given a mono sound source s(t) and it's 3D position
- 1. compute (θ_L, ϕ_L) and (θ_R, ϕ_R) relative to center of listener
- 2. look up measured HRIR for left and right ear at these angles

Head-related Impulse Response (HRIR) applying the HRIR:

- given a mono sound source s(t) and it's 3D position
- 1. compute (θ_L, ϕ_L) and (θ_R, ϕ_R) relative to center of listener
- 2. look up measured HRIR for left and right ear at these angles
- 3. convolve signal with HRIRs to get response for each ear as

$$s_{L}(t) = hrir _l(\theta_{L}, \phi_{L}, t) * s(t)$$

$$s_{R}(t) = hrir _r(\theta_{R}, \phi_{R}, t) * s(t)$$

 HRTF is Fourier transform of HRIR! (you'll find the term HRTF more often that HRIR)

$$s_{L}(t) = hrir_{l}(\theta_{L}, \phi_{L}, t) * s(t)$$

$$s_{R}(t) = hrir_{r}(\theta_{R}, \phi_{R}, t) * s(t)$$

$$s_{L}(t) = F^{-1} \left\{ hrtf \ l(\theta_{L}, \phi_{L}, \omega_{t}) \cdot F \left\{ s(t) \right\} \right\}$$
$$s_{R}(t) = F^{-1} \left\{ hrtf \ r(\theta_{R}, \phi_{R}, \omega_{t}) \cdot F \left\{ s(t) \right\} \right\}$$

• HRTF is Fourier transform of HRIR! (you'll find the term HRTF more often that HRIR)

$$s_{L}(t) = hrir_{l}(\theta_{L}, \phi_{L}, t) * s(t)$$
$$s_{R}(t) = hrir_{r}(\theta_{R}, \phi_{R}, t) * s(t)$$

$$s_{L}(t) = F^{-1} \left\{ hrtf_{-}l(\theta_{L}, \phi_{L}, \omega_{t}) \cdot F\left\{s(t)\right\} \right\}$$
$$s_{R}(t) = F^{-1} \left\{ hrtf_{-}r(\theta_{R}, \phi_{R}, \omega_{t}) \cdot F\left\{s(t)\right\} \right\}$$

convolution theorem

HRTF is Fourier transform of HRIR! (you'll find the term HRTF more often that HRIR)

$$s_{L}(t) = hrir \ l(\theta_{L}, \phi_{L}, t) * s(t)$$
$$s_{R}(t) = hrir \ r(\theta_{R}, \phi_{R}, t) * s(t)$$

$$s_{L}(t) = F^{-1} \left\{ hrtf \ l(\theta_{L}, \phi_{L}, \omega_{t}) \cdot F \left\{ s(t) \right\} \right\}$$
$$s_{R}(t) = F^{-1} \left\{ hrtf \ r(\theta_{R}, \phi_{R}, \omega_{t}) \cdot F \left\{ s(t) \right\} \right\}$$

- properties of HRTF:
 - complex-valued
 - symmetric (because HRIR is real-valued)

ephildue hrtf
$$_l(\theta_L, \phi_L, \omega_t)$$

frequency hrtf $_r(\theta_R, \phi_R, \omega_t)$
frequency frequency

$$s_{L}(t) = F^{-1} \{ hrtf _ l(\theta_{L}, \phi_{L}, \omega_{t}) \cdot F\{s(t)\} \}$$
$$s_{R}(t) = F^{-1} \{ hrtf _ r(\theta_{R}, \phi_{R}, \omega_{t}) \cdot F\{s(t)\} \}$$

Spatial Sound of 1 Point Sound Source

 given s(t) and 3D position, follow instructions from last slides by convolving Fourier transform of s with HRTFs for each each

Spatial Sound of N Point Sound Sources

superposition principle holds, so just sum the contributions of each

$$s_{L}(t) = \sum_{i=1}^{N} F^{-1} \left\{ hrtf_{-}l(\theta_{L}^{i}, \phi_{L}^{i}, \omega_{t}) \cdot F\left\{s_{i}(t)\right\} \right\}$$
$$s_{R}(t) = \sum_{i=1}^{N} F^{-1} \left\{ hrtf_{-}r(\theta_{R}^{i}, \phi_{R}^{i}, \omega_{t}) \cdot F\left\{s_{i}(t)\right\} \right\}$$

Surround Sound

 approximate continuous wave field with discrete set of speakers

- most common:
 5.1 surround sound =
 5 (channels) . 1 (bass)
- \rightarrow 6 channels total

Surround Sound

- approximate continuous wave field with discrete set of speakers
- can also use more speakers for "wave field synthesis" (i.e. audio hologram)

Surround Sound

- approximate continuous wave field with discrete set of speakers
- can also use more speakers for "wave field synthesis" (i.e. audio hologram)
- for wave field synthesis, phase of speakers needs to be synchronized, i.e. a phased array!

Surround Sound & HRTF

- for all speaker-based (surround) sound, we don't need an HRTF because the ears of the listener will apply them!
- speaker setup usually needs to be calibrated

Spatial Audio for VR

• VR/AR requires us to re-think audio, especially spatial audio!

 could use 5.1 surround sound and set up "virtual speakers" in the virtual environment – can use existing content, but not super easy to capture new content; also doesn't capture directionality from above/below

Spatial Audio for VR

Two primary approaches:

- 1. Real-time sound engine
 - render 3D sound sources via HRTF in real-time, just as discussed in the previous slides
 - used for games and synthetic virtual environments
 - a lot of libraries available: FMOD, OpenAL, ...

Spatial Audio for VR

Two primary approaches:

- 2. Spatial sound recorded from real environments
 - most widely used format now: ambisonics
 - simple microphones exist
 - relatively easy mathematical model
 - only need 4 channels for starters
 - used in YouTube VR and many other platforms

Ambisonics

• idea: represent sound incident at a point (i.e. the listener) with some directional information

• using all angles θ, ϕ is impractical – need too many sound channels (one for each direction)

 some lower-frequency (in direction) components may be sufficient → directional basis representation to the rescue!
• use spherical harmonics!

• orthogonal basis functions on a sphere, i.e. full-sphere surround sound

• think Fourier transform acting on the directions of a sphere

- can easily convert a point sound source to the 4-channel ambisonics representation
- given azimuth and elevation θ, ϕ , compute W,X,Y,Z as

$$W = S \cdot \frac{1}{\sqrt{2}}$$
 \leftarrow omnidirectional component (angle-independent) $X = S \cdot \cos \theta \cos \phi$ \leftarrow "stereo in x" $Y = S \cdot \sin \theta \cos \phi$ \leftarrow "stereo in y" $Z = S \cdot \sin \phi$ \leftarrow "stereo in z"

- can also record 4-channel ambisonics via special microphone
- same format supported by YouTube VR and other platforms

http://www.oktava-shop.com/

- easiest way to render ambisonics: convert W,X,Y,Z channels into 4 virtual speaker positions
- for a regularly-spaced square setup, this results in

$$LF = (2W + X + Y)\sqrt{8}$$
$$LB = (2W - X + Y)\sqrt{8}$$
$$RF = (2W + X - Y)\sqrt{8}$$
$$RB = (2W - X - Y)\sqrt{8}$$

The Vestibular System or "What else is happening in the inner ear?"

The Inner Ear

wikipedia

Brief Overview of the Vestibular System

• provides sense of balance & gravity

• like IMUs – one in each ear!

 in each ear, sense linear (3 dof from otolithic organs) and angular (3 dof from 3 semicircular canals) acceleration via hair cells

Vestibulo-Ocular Reflex (VOR)

 vestibular system and ocular system are directly coupled in a feedback system

 enables low-latency "optical image stabilization" of the visual system with head motion

3 types of motion sickness (all related to visual-vestibular conflict theory):

- 1. Motion sickness caused by motion that is felt but not seen
- 2. Motion sickness caused by motion that is seen but not felt
- 3. Motion sickness caused when both systems detect motion but they do not correspond.

3 types of motion sickness (all related to visual-vestibular conflict theory):

- 1. Motion sickness caused by motion that is felt but not seen
- 2. Motion sickness caused by motion that is seen but not felt
- 3. Motion sickness caused when both systems detect motion but they do not correspond.

Example: car and sea sickness

3 types of motion sickness (all related to visual-vestibular conflict theory):

- 1. Motion sickness caused by motion that is felt but not seen
- 2. Motion sickness caused by motion that is seen but not felt
- 3. Motion sickness caused when both systems detect motion but they do not correspond.

Example: VR sickness or visually-induced motion sickness (VIMS)

3 types of motion sickness (all related to visual-vestibular conflict theory):

- 1. Motion sickness caused by motion that is felt but not seen
- 2. Motion sickness caused by motion that is seen but not felt
- 3. Motion sickness caused when both systems detect motion but they do not correspond.

Example: motion in low gravity

References and Further Reading

Panoramic Imaging and VR

- M. Brown, D. Lowe "Automatic Panoramic Image Stitching using Invariant Features", IJCV 2007
- autostitch: http://matthewalunbrown.com/autostitch/autostitch.html
- S. Peleg, M. Ben-Ezra, Y. Pritch "Omnistereo: Panoramic Stereo Imaging" IEEE PAMI 2001
- Konrad et al. "SpinVR: Towards Live Streaming VR Video", ACM SIGGRAPH Asia 2017

References and Further Reading - Spatial Sound

• Google's take on spatial audio: https://developers.google.com/vr/concepts/spatial-audio

HRTF:

- Algazi, Duda, Thompson, Avendado "The CIPIC HRTF Database", Proc. 2001 IEEE Workshop on Applications of Signal Processing to Audio and Electroacoustics
- download CIPIC HRTF database here: http://interface.cipic.ucdavis.edu/sound/hrtf.html

Resources by Google:

- https://github.com/GoogleChrome/omnitone
- https://developers.google.com/vr/concepts/spatial-audio
- https://opensource.googleblog.com/2016/07/omnitone-spatial-audio-on-web.html
- http://googlechrome.github.io/omnitone/#home
- https://github.com/google/spatial-media/