
The Graphics Pipeline and OpenGL II: The Graphics Pipeline and OpenGL II: The Graphics Pipeline and OpenGL II:
Lighting and Shading, Fragment Processing

Gordon Gordon Wetzstein
Stanford University

EE 267 Virtual Reality
Lecture 3

stanford.edustanford.edu/class/ee267/

Announcements
• Waitlist is getting smaller, so stay on it if you’re planning on taking the class;

some students also offered to share kits

• questions for HW1? post on Ed Discussion and zoom office hours!

• WIM workshop 1: this Friday 2-3 pm, Packard 204 à if you are a WIM student,
you must should attend!

• WIM HW1 going out this Friday

Lecture Overview
• rasterization
• the rendering equation, BRDFs
• lighting: computer interaction between vertex/fragment and lights

• Phong lighting
• shading: how to assign color (i.e. based on lighting) to each fragment

• Flat, Gouraud, Phong shading
• vertex and fragment shaders
• texture mapping

Review of Vertex/Normal Transforms

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

vertex/normal
transforms

Rasterization

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Rasterization

Purpose:

1. determine which fragments

are inside the triangles
2. interpolate vertex attributes

(e.g. color) to all fragments

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y
• grid of 6x6 fragments

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

• grid of 6x6 fragments
• 2D vertex positions after transformations

x

y

(x1, y1)

(x2, y2) (x3, y3)

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

• grid of 6x6 fragments
• 2D vertex positions after transformations

+ edges = triangle

x

y

(x1, y1)

(x2, y2) (x3, y3)

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

• grid of 6x6 fragments
• 2D vertex positions after transformations

+ edges = triangle

• each vertex has 1 or more attributes A,
such as R/G/B color, depth, …

• user can assign arbitrary attributes, e.g.
surface normals

x

y

A1

A2 A3

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y

A1

A2 A3

• scanline moving top to bottom

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y

A1

A2 A3

• scanline moving top to bottom

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y

A1

A2 A3

• scanline moving top to bottom
• determine which fragments are inside the

triangle

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y

A1

A2 A3

• scanline moving top to bottom
• determine which fragments are inside the

triangle

• interpolate attribute along edges in y

• y(l/r) are the y coordinates of A(l/r), i.e. the
y coordinate of the scanline

A(l) = y(l) − y2
y1 − y2

⎛
⎝⎜

⎞
⎠⎟
A1 +

y1 − y
(l)

y1 − y2

⎛
⎝⎜

⎞
⎠⎟
A2

A(r) = y(r) − y3
y1 − y3

⎛
⎝⎜

⎞
⎠⎟
A1 +

y1 − y
(r)

y1 − y3

⎛
⎝⎜

⎞
⎠⎟
A3

A(l) A(r)

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y

A1

A2 A3

• scanline moving top to bottom
• determine which fragments are inside the

triangle

• interpolate attribute along edges in y
• then interpolate along x

• x(l/r) are the x coordinates of A(l/r), which
can be computed via similar triangles

A(l) A(r)

A = x − x(l)

x(r) − x(l)
⎛
⎝⎜

⎞
⎠⎟
A(r) + x(r) − x

x(r) − x(l)
⎛
⎝⎜

⎞
⎠⎟
A(l)

A

final, interpolated attribute A at fragment

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y

A1

A2 A3

repeat:
• interpolate attribute along edges in y
• then interpolate along x

A(l) A(r)

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y

A1

A2 A3

repeat:
• interpolate attribute along edges in y
• then interpolate along x

A(l) A(r)

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y

A1

A2 A3

0 1 2 3 4 5

0

1

2

3

4

5

Rasterization / Scanline Interpolation

x

y
output: set of fragments inside triangle(s)
with interpolated attributes for each of
these fragments

Lighting & Shading
(how to determine color and what attributes to interpolate)

The Rendering Equation

Kajija “The Rendering Equation”, SIGGRAPH 1986

! direct (local) illumination:
 light source ! surface ! eye

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

The Rendering Equation

Kajija “The Rendering Equation”, SIGGRAPH 1986

radiance towards viewer emitted radiance BRDF incident radiance from some directionradiance towards viewer emitted radiance BRDF incident radiance from some direction

! direct (local) illumination:
 light source ! surface ! eye

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

The Rendering Equation

Kajija “The Rendering Equation”, SIGGRAPH 1986

radiance towards viewer emitted radiance BRDF incident radiance from some directionradiance towards viewer emitted radiance BRDF incident radiance from some direction

3D location

! direct (local) illumination:
 light source ! surface ! eye

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

The Rendering Equation

Kajija “The Rendering Equation”, SIGGRAPH 1986

radiance towards viewer emitted radiance BRDF incident radiance from some directionradiance towards viewer emitted radiance BRDF incident radiance from some direction

Direction towards viewer

! direct (local) illumination:
 light source ! surface ! eye

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

The Rendering Equation

Kajija “The Rendering Equation”, SIGGRAPH 1986

radiance towards viewer emitted radiance BRDF incident radiance from some directionradiance towards viewer emitted radiance BRDF incident radiance from some direction

wavelength

! direct (local) illumination:
 light source ! surface ! eye

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

The Rendering Equation

Kajija “The Rendering Equation”, SIGGRAPH 1986

radiance towards viewer emitted radiance BRDF incident radiance from some directionradiance towards viewer emitted radiance BRDF incident radiance from some direction

time

! direct (local) illumination:
 light source ! surface ! eye

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

The Rendering Equation

Kajija “The Rendering Equation”, SIGGRAPH 1986

! direct (local) illumination:
 light source ! surface ! eye

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

! drop time, wavelength (RGB) & global

illumination to make it simple

!

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

The Rendering Equation

Kajija “The Rendering Equation”, SIGGRAPH 1986

! direct (local) illumination:
 light source ! surface ! eye

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

! drop time, wavelength (RGB), emission &

global illumination to make it simple

!

! indirect (global) illumination:
 light source ! surface! … ! surface ! eye

L0 (x,! 0) = fr x,! k ,! o()
k=1

num_ lights

" Li (x,! k) ! k #n()

The Rendering Equation
• drop time, wavelength (RGB), emission &

global illumination to make it simple

L0 (x,ω 0) = fr x,ω k ,ω o()
k=1

num_ lights

∑ Li (x,ω k) ω k ⋅n()

Bidirectional Reflectance Distribution Function (BRDF)

• many different BRDF models exist: analytic, data
driven (i.e. captured)

ht
tp

://
es

ci
en

ce
.a

nu
.e

du
.a

u/
le

ct
ur

e/
cg

/G
lo

ba
lIl

lu
m

in
at

io
n/

BR
D

F.
en

.h
tm

l

Ngan et al. 2004

Bidirectional Reflectance Distribution Function (BRDF)

! can approximate BRDF with a few simple
components

ht
tp

://
es

ci
en

ce
.a

nu
.e

du
.a

u/
le

ct
ur

e/
cg

/G
lo

ba
lIl

lu
m

in
at

io
n/

BR
D

F.
en

.h
tm

l

specular
component

diffuse
component

incident light
direction

normal

surface

Phong Lighting

• emissive part can be added if desired
• calculate separately for each color channel: RGB

Phong Lighting

• simple model for direct lighting

• ambient, diffuse, and specular parts

• requires:
• material color mRGB (for each of

ambient, diffuse, specular)

• light color lRGB (for each of ambient,
diffuse, specular)

L
N
V

normalized vector pointing towards light source

normalized surface normal

normalized vector pointing towards viewer

 R = 2 N i L()N − L
normalized reflection on surface normal

ht
tp

s:
//w

w
w

.n
tu

.e
du

.s
g/

ho
m

e/
eh

ch
ua

/p
ro

gr
am

m
in

g/
op

en
gl

/C
G

_B
as

ic
sT

he
or

y.
ht

m
l

Phong Lighting: Ambient

• independent of light/surface position,
viewer, normal

• basically adds some background color

m R,G ,B{ }
ambient ⋅ l R,G ,B{ }

ambient

Phong Lighting: Diffuse

! needs normal and light source direction

! adds intensity cos-falloff with incident angle

m R,G ,B{ }
diffuse ! l R,G ,B{ }

diffuse !max(L i N ,0)

dot product

L i N

ht
tp

s:
//w

w
w

.n
tu

.e
du

.s
g/

ho
m

e/
eh

ch
ua

/p
ro

gr
am

m
in

g/
op

en
gl

/C
G

_B
as

ic
sT

he
or

y.
ht

m
l

Phong Lighting: Specular

• needs normal, light & viewer direction

• models reflections = specular highlights
• shininess – exponent, larger for smaller

highlights (more mirror-like surfaces)

m R,G ,B{ }

specular ⋅ l R,G ,B{ }
specular ⋅max(R iV ,0)shininess

ht
tp

s:
//w

w
w

.n
tu

.e
du

.s
g/

ho
m

e/
eh

ch
ua

/p
ro

gr
am

m
in

g/
op

en
gl

/C
G

_B
as

ic
sT

he
or

y.
ht

m
l

Phong Lighting: Attenuation

! models the intensity falloff of light w.r.t.
distance

! The greater the distance, the lower the
intensity

1
kc + kld + kqd

2

d

constant

l

linear quadratic attenuation

qc

ht
tp

s:
//w

w
w

.n
tu

.e
du

.s
g/

ho
m

e/
eh

ch
ua

/p
ro

gr
am

m
in

g/
op

en
gl

/C
G

_B
as

ic
sT

he
or

y.
ht

m
l

Phong Lighting: Putting it all Together

! this is a simple, but efficient lighting model
! has been used by OpenGL for ~25 years

! absolutely NOT sufficient to generate photo-realistic renderings (take a computer
graphics course for that)

color R,G ,B{ } = m R,G ,B{ }
ambient ! l R,G ,B{ }

ambient + 1
kc + kldi + kqdi

2 m R,G ,B{ }
diffuse ! li, R,G ,B{ }

diffuse !max(Li i N ,0)+m R,G ,B{ }
specular ! li R,G ,B{ }

specular !max(Ri iV ,0)
shininess()

i=1

num_ lights

"

attenuationambient diffuse specular

Lighting Calculations

• all lighting calculations happen in camera/view space!

• transform vertices and normals into camera/view space
• calculate lighting, i.e. per color (i.e., given material properties, light source

color & position, vertex position, normal direction, viewer position)

Lighting v Shading
• lighting: interaction between light and surface (e.g. using Phong lighting model;

think about this as “what formula is being used to calculate intensity/color”)

• shading: how to compute color of each fragment (e.g. what attributes to
interpolate and where to do the lighting calculation)
1. Flat shading
2. Gouraud shading (per-vertex lighting)
3. Phong shading (per-fragment lighting) - different from Phong lighting

courtesy: Intergraph Computer Systems

Flat Shading

• compute color only once per triangle (i.e. with Phong lighting)
• pro: usually fast to compute; con: creates a flat, unrealistic appearance

• we won’t use it

Gouraud or Per-vertex Shading

! compute color once per vertex (i.e. with Phong lighting)
! interpolate per-vertex colors to all fragments within the triangles!

! pro: usually fast-ish to compute; con: flat, unrealistic specular highlights

target surface

per-vertex
normal

surface approximation
by triangles

Gouraud Shading or Per-vertex Lighting

! compute color once per vertex (i.e. with Phong lighting)
! interpolate per-vertex colors to all fragments within the triangles!

! pro: usually fast-ish to compute; con: flat, unrealistic specular highlights

per-vertex lighting

Gouraud Shading or Per-vertex Lighting

! compute color once per vertex (i.e. with Phong lighting)
! interpolate per-vertex colors to all fragments within the triangles!

! pro: usually fast-ish to compute; con: flat, unrealistic specular highlights

per-vertex lighting shaded surface

interpolate colors

Gouraud Shading or Per-vertex Lighting

• compute color once per vertex (i.e. with Phong lighting)
• interpolate per-vertex colors to all fragments within the triangles!

• pro: usually fast-ish to compute; con: flat, unrealistic specular highlights

ht
tp

s:
//e

n.
w

ik
ip

ed
ia

.o
rg

/w
ik

i/G
ou

ra
ud

_s
ha

di
n

g

Phong Shading or Per-fragment Lighting

! compute color once per fragment (i.e. with Phong lighting)
! need to interpolate per-vertex normals to all fragments to do the lighting

calculation!
! pro: better appearance of specular highlights; con: usually slower to compute

per-fragment lighting

interpolate normals

Shading

http://www.decew.net/OSS/timeline.php

Flat Shading Gouraud Shading Phong Shading

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Back to the Graphics Pipeline

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Per-vertex Lighting v Per-fragment Lighting

vertex shader fragment shader

! lighting calculations
done for each vertex

! lighting calculations done
for each fragment

Vertex and Fragment Shaders
• shaders are small programs that are executed in parallel on the GPU for each

vertex (vertex shader) or each fragment (fragment shader)

• vertex shader (before rasterizer):
• modelview projection transform of vertex & normal (see last lecture)
• if per-vertex lighting: do lighting calculations here (otherwise omit)

• fragment shader (after rasterizer):
• assign final color to each fragment
• if per-fragment lighting: do all lighting calculations here (otherwise omit)

Fragment Processing

• lighting and shading (per-fragment) – same calculations as per-vertex shading,
but executed for each fragment

• texture mapping

these also happen, but don’t worry about them (we wont touch these):
• fog calculations
• alpha blending

• hidden surface removal (using depth buffer)
• scissor test, stencil test, dithering, bitmasking, …

Depth Test
• oftentimes we have multiple triangles behind each other, the depth test

determines which one to keep and which one to discard
• if depth of fragment is smaller than current value in depth buffer à overwrite

color and depth value using current fragment; otherwise discard fragment

color buffer depth buffer

Texture Mapping
• texture = 2D image (e.g. RGBA)
• we want to use it as a “sticker” on our 3D surfaces

• mapping from vertex to position on texture (texture coordinates u,v)

https://blogs.msdn.microsoft.com/danlehen/2005/11/06/3d-for-the-rest-of-us-texture-coordinates/ (sorry, this website seems to be discontinued)

u

v

Texture Mapping

Non-normalized Texture CoordinatesNormalized Texture Coordinates

texture_width

texture_height

• texture = 2D image (e.g. RGBA)
• we want to use it as a “sticker” on our 3D surfaces

• mapping from vertex to position on texture (texture coordinates u,v)

Texture Mapping
• same texture, different texture coordinates

Texture Coordinates Rendered Triangle Texture Coordinates Rendered Triangle

https://blogs.msdn.microsoft.com/danlehen/2005/11/06/3d-for-the-rest-of-us-texture-coordinates/ (sorry, this website seems to be discontinued)

Texture Mapping
• texture mapping faces

turbosquid.com Bermano et al. 2013

Texture Mapping
• texture filtering: fragments don’t align with texture pixels (texels) à interpolate

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Next Lecture: Vertex & Fragment Shaders, GLSL

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

vertex shader fragment shader

! transforms & (per-
vertex) lighting

! texturing
! (per-fragment) lighting

Summary
• rasterization
• the rendering equation, BRDFs
• lighting: computer interaction between vertex/fragment and lights

• Phong lighting
• shading: how to assign color (i.e. based on lighting) to each fragment

• Flat, Gouraud, Phong shading
• vertex and fragment shaders
• texture mapping

Further Reading
• good overview of OpenGL (deprecated version) and graphics pipeline (missing a

few things) :
 https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

• textbook: Shirley and Marschner “Fundamentals of Computer Graphics”, AK

Peters, 2009

• definite reference: “OpenGL Programming Guide” aka “OpenGL Red Book”

• WebGL / three.js tutorials: https://threejs.org/

