Head Mounted Display Optics I

Gordon Wetzstein Stanford University

EE 267 Virtual Reality

Lecture 7

stanford.edu/class/ee267/

Logistics

 HW3 is probably the longest homework, so get started asap if you have not done so already

• hardware kits will be handed out in TA office hours this week

Lecture Overview

- 1. stereo rendering for HMDs
- 2. field of view and visual field
- 3. lens distortion correction using GLSL
- 4. overview of microdisplay technology

Stereo Rendering for HMDs

All Current-generation VR HMDs are "Simple Magnifiers"

Side View

virtual image

Image Formation

Gaussian thin lens formula:

Gaussian thin lens formula:

virtual image

h

h

h

Top View

Top View

Top View

Top View

Prototype Specs – View-Master Deluxe VR Viewer

- roughly follows Google Cardboard 2.0:
 - lenses focal length: 40 mm
 - lenses diameter: 34 mm
 - inter-lens distance: 64 mm
 - screen to lens distance: 39 mm
 - eye relief: 18 mm
- Topfoison 6" LCD: width 132.5 mm, height 74.5 mm; 1920x1080 px OR
- Topfoison 5.5" LCD: width 120.96 mm, height 68.03 mm; 1920x1080 px

use these formulas to compute the perspective matrix in WebGL

• you can use:

that's all you need to render stereo images on the HMD

Image Formation for More Complex Optics

 especially important in free-form optics, off-axis optical configurations & AR

 use ray tracing – some nonlinear mapping from view frustum to microdisplay pixels

 much more computationally challenging & sensitive to precise calibration; our HMD and most magnifier-based designs will work with what we discussed so far

Field of View and Visual Field

- use Google Cardboard 2 lenses (f=40mm, d'=39mm, interpupillary/interlens distance = 64mm, eye relief = 18mm)
- Topfoison 6" LCD panel (132.5 x 74.5 mm)

virtual image of right display side

vertical field of view:

87° vertical field of view is approx. 64% of the vertical visual field of a single eye (135° total)

total monocular field of view of both eyes:

$$fov_h^{(total)} = 2 fov_h^{(temporal)} = 82^\circ$$

82° monocular field of view is approx. 41% of the full monocular visual field of both eyes (200° total)

binocular field of view of both eyes:

$$fov_h^{(total)} = 2 fov_h^{(nasal)} = 78^\circ$$

78° binocular field of view is approx. 65% of the binocular visual field of both eyes (120° total)

Lens Distortion Correction

All lenses introduce image distortion, chromatic aberrations, and other artifacts – we need to correct for them as best as we can in software!

• grid seen through HMD lens

 lateral (xy) distortion of the image

 chromatic aberrations: distortion is wavelength dependent!

image from: https://www.slideshare.net/Mark_Kilgard/nvidia-opengl-in-2016

Pincussion Distortion

Barrel Distortion

Pincussion Distortion

<u>optical</u>

Barrel Distortion

digital correction

image from: https://www.slideshare.net/Mark_Kilgard/nvidia-opengl-in-2016

• x_u, y_u undistorted point

•
$$x_u, y_u$$
 undistorted point
• $x_d \approx x_u \left(1 + K_1 r^2 + K_2 r^4\right)$
 $y_d \approx y_u \left(1 + K_1 r^2 + K_2 r^4\right)$

- X_d, y_d distorted point coordinates
- K_1, K_2 distortion coefficients
- *r* normalized distance from center
- x_c, y_c center of optical axis

ightarrow this is the origin, i.e. all other points are defined relative to this

•
$$x_u, y_u$$
 undistorted point

•
$$x_d \approx x_u \left(1 + K_1 r^2 + K_2 r^4 \right)$$

 $y_d \approx y_u \left(1 + K_1 r^2 + K_2 r^4 \right)$

- X_d , Y_d distorted point coordinates
- K_1, K_2 distortion coefficients
- *r* normalized distance from center
- x_c, y_c center of optical axis

 \rightarrow this is the origin, i.e. all other points are defined relative to this

NOTES:

- center is assumed to be the center point (on optical axis) on screen
- distortion is radially symmetric around center point
- easy to get confused!
- can implement in fragment shader (not super efficient, but easier for us)

Normalizing r

•
$$x_u, y_u$$
 undistorted point
• $x_d \approx x_u \left(1 + K_1 r^2 + K_2 r^4\right)$
 $y_d \approx y_u \left(1 + K_1 r^2 + K_2 r^4\right)$

un-normalized radial distance from center:

$$\tilde{r}^2 = (x_u - x_c)^2 + (y_u - y_c)^2 \longrightarrow$$

 x_c, y_c center

Calculate \tilde{r} in metric units, e.g. mm. Need physical size of the pixels of your screen for this!

Lens Distortion Correction Example

stereo rendering <u>without</u> lens distortion correction

Lens Distortion Correction Example

stereo rendering <u>with</u> lens distortion correction

How to Render into Different Parts of the Window?

- WebGLRenderer.setViewport(x,y,width,height)
- x, y lower left corner; width, height viewport size

Overview of Microdisplays

Liquid Crystal Display (LCD) - Subpixels

TN subpixels

LCD Backlight

wikipedia

Liquid Crystal on Silicon (LCoS)

• basically a reflective LCD

- standard component in projectors and
 head mounted displays
 - used e.g. in google glass

Organic Light Emitting Diodes (OLED)

- Self emissive
 - Lower persistence (can turn on and off faster than LCD/LCoS, which is great for VR)
- used e.g. VR-compatible
 phones, like Google's
 Pixel

Digital Micromirror Device (DMD)

- developed by TI
- MEMS device
- binary states (e.g. +/- 10 degrees)
- gray-level through pulse width modulation (PWM)
- Super-fast (10-20 kHZ binary display
- More light efficient than LCD/LCoS!

Figure 1. 1 mm x 9 mm scanning fiber projector.

B. T. Schowengerdt, R. Johnston, C.D. Melville, E.J. Seibel. 3D Displays Using Scanning Laser Projection. SID 2012.

Next Lecture: HMD Displays Optics II

• advanced VR & AR optics

drawing from Google Glass patent