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To motivate randomized least squares, it’s useful to think of randomized least squares as
approximating one objective function with another that is cheaper to compute. We see this
idea often in other fields: for example, in constructing generalization bounds for machine
learning algorithms, we approximate population loss using the sample/empirical loss.

8.1 Least Squares Problems and Random Projection

Recall the least squares problem: given A ∈ Rn×d and b ∈ Rn, we want to find the best
approximation x ∈ Rd such that Ax ≈ b, i.e.,

xLS = arg min
x∈Rd

‖Ax− b‖22

If A has full column rank, then the solution xLS is given by xLS = (ATA)−1AT b. Let
A = UΣV T be a singular value decomposition. As the pseudoinverse of A is given by
A+ = V Σ+UT , we can also write the least squares solution as

xLS = A+b = V Σ+UT b,

so that b ∈ R(A) and b = AxLS + b⊥. We’ll see that expressing b in this way gives us a tool
to prove unbiasedness of randomized least squares.

8.2 Faster Least Squares Optimization: Random Pro-

jection

One way to obtain a faster least squares solution is random projection. Suppose we have a
random projection matrix S ∈ Rm×n and instead work with the problem

min
x∈Rd
‖SAx− Sb‖22 .

Choosing S so that E[STS] = I, we have

E
[
‖SAx− Sb‖22

]
= E

[
(Ax− b)TSTS(Ax− b)

]
= (Ax− b)T (Ax− b),

which was our original objective. This is the left-sketching approach.
This sketched problem can be solved using any classical method with direct method

complexity O(md2). Of the direct methods, Cholesky decomposition is the most commonly
used, while conjugate gradient is the most commonly used of the indirect methods. On the
other hand, gradient descent with sparse A and dense S could actually take longer on the
sketched problem than on the original one, as the matrix SA is usually dense.

We’ll see that m� d in practice, or else the variance with respect to our sketched solution
will blow up, i.e., d is a computational lower limit on m, analogous to channel capacity.
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8.3 Approximation Result

Consider A ∈ Rn×d with n � d and let S ∈ Rm×d be a Johnson-Lindenstrauss embedding.
Then in lieu of the classical least squares problem

xLS = arg min
x∈Rd

‖Ax− b‖22 ,

we instead solve the problem

x̃ = arg min
x∈Rd

‖SAx− Sb‖22 .

Denote f(xLS) = ‖Ax− b‖22 and f(x̃) = ‖SAx− Sb‖22. We have the follow result.

Lemma 1. If m ≥ constant · rank(A)
ε2

, then

f(xLS) ≤ f(x̃) ≤ (1 + ε2)f(xLS)

and
‖A(xLS − x̃)‖22 ≤ ε2

with high probability.

So we have both upper and lower bounds on f(x̃), as well as a probabilistic upper bound
on the prediction difference AxLS − Ax̃ in the 2-norm sense.

8.4 Application: Streaming data

Consider a setting where we need to update our least squares solution in each time period.
For example, suppose A ∈ Rn×d is our feature matrix.

A naive approach would be to update the entries of A in each time period re-solve the
least squares problem; this would require O(nd2) time. In seeking a better solution, we can
look to the normal equations for insight:

ATA = AT b.

Notice that ATA ∈ Rd×d. With n � d, this is a relatively smaller problem, and therefore
certainly less expensive to solve.

However, updates to ATA are in general expensive. For example, an update At+1 =
At + ∆t at time t+ 1 for some ∆t ∈ Rn×d would result in additional matrix multiplications
on top of the multiplication required to construct ATt At:

(At + ∆t)
T (At + ∆t) = ATt At + ATt ∆t + ∆T

t At + ∆T
t ∆t

as well as additional memory. Linear sketching, on the other hand, requires only O(md)
memory to store the data, so using the random projection matrix to track A and b—i.e.,
SAt+1 = SAt + S∆t and Sbt+1 = Sbt + S∆t—provides a more memory-efficient solution in
this dynamic setting.
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8.5 Gaussian Sketch

Now we examine a particular formulation of S: the Gaussian sketch. That is, let S have
i.i.d. Gaussian entries i.e., Sij = 1√

m
N(0, 1) with E[STS] = I. Recall that the sketched least

squares solution is given by
x̃ = arg min

x∈Rd

‖SAx− Sb‖22 .

As S is random, an important question is whether E[x̃] is equal to xLS, so that in expectation
we obtain the true least squares solution.

Assuming that ATSTSA is invertible (which will hold with high probability whenm� d),
we can write

x̃ = (ATSTSA)−1ATSTSb

which, rewriting b = AxLS + b⊥ where b⊥ ⊥ Range(A), we can write

x̃ = (ATSTSA)−1ATSTS(AxLS + b⊥)

= xLS + (ATSTSA)−1ATSTSb⊥

Then for E[x̃] = xLS to hold, we need

E[(ATSTSA)−1ATSTSb⊥]

to vanish. To see that this will happen, note that SA and Sb⊥ are uncorrelated, which then
implies independence. Then we can rewrite the expectation

E[x̃] = ESA[(ATSTSA)−1ATST ] · ESb⊥ [Sb⊥] (independence)

= ESA[(ATSTSA)−1ATST ] · 0 (Sb⊥ has zero mean)

= 0

and so we see that indeed, the expectation of the randomly projected solution is equal to
the true solution using the Gaussian sketch.

8.6 Gaussian Sketch: Variance

We also want to analyze the variance

E[‖Ax̃− AxLS‖22].

One thing to note is that we can achieve a lower variance when the objective value given
by f(xLS) = ‖Ax− b‖22 is small, analogous, for example, to the variance being low when the
training loss is small when fitting machine learning models.

Something else to note is that throughout, we assume that the inverse of ATSTSA exists.
In fact, if the eigenvalues of this matrix are small, i.e., ATSTSA is nearly not invertible,
then the variance will increase accordingly. However, we have some control over this via
construction of S.
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In analyzing the variance, we first condition on SA to obtain a distribution and then
relax this assumption. Note that by fixing SA, the only randomness in x̃ comes from Sb⊥,
which we can write as:

Sb⊥ =

S
T
1 b
⊥

ST2 b
⊥

...

 =


...∑

j Sijb
⊥
j

...

 .
Then

Var

[∑
j

Sijb
⊥
j

]
=
∑
i

(
b⊥j
)2 · 1

m
(since Sij ∼

1√
m

Gaussian)

=
∥∥b⊥∥∥2

2
· 1

m

= ‖b− AxLS‖2 ·
1

m

= f(xLS) · 1

m

so we have that Sb⊥ ∼ N
(

0, f(xLS)
m

I
)

and

x̃ ∼ N

(
xLS,

f(xLS)

m
(ATSTSA)−1

)
from which it follows that

A (x̃− xLS) ∼ N

(
0,
f(xLS)

m
A
(
ATSTSA

)−1
AT
)
.

Now consider SA no longer fixed. Though E[ATSTSA] is unbiased forATA, E[(ATSTSA)−1]
is biased for (ATA)−1 with factor m

m−d−1 (we’ll see later where this factor comes from). That
is, for m > d+ 1, we have

E
[(
ATSTSA

)−1]
=
(
ATA

)−1 m

m− d− 1

Therefore, if m = d− 1 for instance, the variance will blow up.
Note that for z ∼ N(0, K), we have

E[‖z‖22] = E[tr zzT ] = E[trK],

so we can write

E ‖A (x̃− xLS)‖22 = E
[
f (xLS)

m
trA

(
ATSTSA

)−1
AT
]

=
f (xLS)

m− d− 1
trA

(
ATA

)−1
AT
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Now notice that A
(
ATA

)−1
AT = AA+ projects onto the column space of A.

Let A = UΣV T be an SVD of A.

trA
(
ATA

)−1
AT = trUUT (equivalent projection matrices)

= trUTU (cyclic property of trace)

= tr Id×d

= d

= rank(A)

So we conclude

E ‖A (x̃− xLS)‖22 = f (xLS)
d

m− d− 1
.

where f(xLS) m
m−d−1 gives us an idea of how to set m in constructing S in order to obtain a

certain expected error.

8.7 Expected Inverse of a Random Matrix

We examine the expression

E
[(
ATSTSA

)−1]
= (ATA)−1

m

m− d− 1

in greater detail. Let A = UΣV T be a compact SVD of A. Then we can write

(ATSTSA)−1 = (V ΣUTSTSUΣV T )−1

= V TΣ−1(UTSTSU)−1Σ−1V

and since S is i.i.d ∼ N(0, 1√
m

, SU will also be i.i.d. Gaussian as U is orthogonal and therefore
a rotation. Then

E[(UTSTSU)−1] = I · constant

so

E[V TΣ−1(UTSTSU)−1Σ−1V ] = V TΣ−2V · constant

= (ATA)−1 · constant

where the constant above is equal to the factor m
m−d−1 we saw earlier. This constant is the

expected value of a certain χ2 random variable, a result from random matrix theory.

8.8 Which sketching matrices are good?

We saw that with random sketching, some conditions needed to be fulfilled in order to
guarantee approximate optimality (e.g., recall that the Gaussian sketch requires ATSTSA
to be invertible). We can also consider deterministic formulations of the sketching matrix S.
Let A = UΣV T be an SVD of A in compact form.

8-5



EE 270 Lecture 8 — January 30 Winter 2020

Option 1: S = UT

Suppose we choose S = UT , i.e, the matrix containing the left singular vectors in its rows as
our sketching matrix.

x̃ = (SA)+Sb

= (UTUΣV T )+Sb

= (ΣV T )+Sb

= V Σ−1Sb

= V Σ−1UT b

= A+b

= xLS

So we’ve recovered the least squares solution exactly using S = UT ! However, a prerequisite
for doing so requires the costly computation of the left singular vectors (takes O(nd2) time).

Option 2: S = AT

Now suppose we choose S = AT .

x̃ = (SA)+Sb

= (ATA)+AT b

= V Σ−2V TV ΣUT b

= V Σ−1UT b

= xLS

So again we’ve recovered the least squares solution exactly, but we wanted to avoid the cost
of computing ATA in the first place (which, again, takes O(nd2) time).
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